def get_ts_from_complete_data(complete_data, mask, keys, dates=None):

    if keys == None:
        keys = list(complete_data.keys())

    common_dates = becgis.common_dates([complete_data[key][1] for key in keys])
    becgis.assert_proj_res_ndv([complete_data[key][0] for key in keys])

    MASK = becgis.open_as_array(mask, nan_values=True)

    tss = dict()

    for key in keys:

        var_mm = np.array([])

        for date in common_dates:

            tif = complete_data[key][0][complete_data[key][1] == date][0]

            DATA = becgis.open_as_array(tif, nan_values=True)
            DATA[np.isnan(DATA)] = 0.0

            DATA[np.isnan(MASK)] = np.nan

            var_mm = np.append(var_mm, np.nanmean(DATA))

        tss[key] = (common_dates, var_mm)

    return tss
def calc_basinmean(perc_fh, lu_fh):
    """
    Calculate the mean of a map after masking out the areas outside an basin defined by
    its landusemap.
    
    Parameters
    ----------
    perc_fh : str
        Filehandle pointing to the map for which the mean needs to be determined.
    lu_fh : str
        Filehandle pointing to landusemap.
    
    Returns
    -------
    percentage : float
        The mean of the map within the border of the lu_fh.
    """
    output_folder = tf.mkdtemp()
    perc_fh = becgis.match_proj_res_ndv(lu_fh, np.array([perc_fh]),
                                        output_folder)
    EWR = becgis.open_as_array(perc_fh[0], nan_values=True)
    LULC = becgis.open_as_array(lu_fh, nan_values=True)
    EWR[np.isnan(LULC)] = np.nan
    percentage = np.nanmean(EWR)
    shutil.rmtree(output_folder)
    return percentage
def root_zone_storage_Wpx(output_folder, rz_sm_fhs, rz_depth_fh):
    Data_Path_RZ = "RZstor"
    out_folder = os.path.join(output_folder, Data_Path_RZ)
    if not os.path.exists(out_folder):
        os.mkdir(out_folder)
    root_depth = becgis.open_as_array(rz_depth_fh, nan_values=True)
    geo = becgis.get_geoinfo(rz_depth_fh)
    root_storage_fhs = []
    for rz_sm_fh in rz_sm_fhs:
        root_depth_sm = becgis.open_as_array(rz_sm_fh, nan_values=True)
        root_storage = root_depth * root_depth_sm
        out_fh = os.path.join(out_folder,
                              'RZ_storage_mm_%s' % (rz_sm_fh[-10:]))
        becgis.create_geotiff(out_fh, root_storage, *geo)
        root_storage_fhs.append(out_fh)
    return root_storage_fhs
def calc_ETs(ET, lu_fh, sheet1_lucs):
    """
    Calculates the sums of the values within a specified landuse category.
    
    Parameters
    ----------
    ET : ndarray
        Array of the data for which the sum needs to be calculated.
    lu_fh : str
        Filehandle pointing to landusemap.
    sheet1_lucs : dict
        Dictionary with landuseclasses per category.
    
    Returns
    -------
    et : dict
        Dictionary with the totals per landuse category.
    """
    LULC = becgis.open_as_array(lu_fh, nan_values=True)
    et = dict()
    for key in sheet1_lucs:
        classes = sheet1_lucs[key]
        mask = np.logical_or.reduce([LULC == value for value in classes])
        et[key] = np.nansum(ET[mask])
    return et
def get_ts_from_complete_data_spec(complete_data, lu_fh, keys, a, dates=None):

    if keys == None:
        keys = list(complete_data.keys())

    common_dates = becgis.common_dates([complete_data[key][1] for key in keys])
    becgis.assert_proj_res_ndv([complete_data[key][0] for key in keys])

    MASK = becgis.open_as_array(lu_fh, nan_values=True)

    lucs = lucs = gd.get_sheet4_6_classes()
    gw_classes = list()
    for subclass in [
            'Forests', 'Rainfed Crops', 'Shrubland', 'Forest Plantations'
    ]:
        gw_classes += lucs[subclass]
    mask_gw = np.logical_or.reduce([MASK == value for value in gw_classes])

    tss = dict()

    for key in keys:

        var_mm = np.array([])

        for date in common_dates:

            tif = complete_data[key][0][complete_data[key][1] == date][0]

            DATA = becgis.open_as_array(tif, nan_values=True)
            DATA[np.isnan(DATA)] = 0.0

            DATA[np.isnan(MASK)] = np.nan

            alpha = np.ones(np.shape(DATA)) * a

            alpha[mask_gw] = 0.0

            var_mm = np.append(var_mm, np.nanmean(DATA * alpha))

        tss[key] = (common_dates, var_mm)

    return tss
def fuel_wood(output_folder, lu_fh, AREA, ndm_fhs, fraction_fhs, ndmdates):
    """
    Calculate natural livestock feed production

    INPUTS
    ----------
    lu_fh : str
        filehandle for land use map
    ndm_fhs: nd array
        array of filehandles of NDM maps
    abv_grnd_biomass_ratio: dict
        dictionnary 'LULC':[above ground biomass]
    """
    Data_Path_Fuel = "Fuel"
    out_folder = os.path.join(output_folder, Data_Path_Fuel)
    if not os.path.exists(out_folder):
        os.mkdir(out_folder)

    area_ha = AREA * 100
    LULC = RC.Open_tiff_array(lu_fh)
    geo_out, proj, size_X, size_Y = RC.Open_array_info(lu_fh)

    fuel_classes = [1, 8, 9, 10, 11, 12, 13]
    fuel_mask = np.zeros(LULC.shape)
    for fc in fuel_classes:
        fuel_mask[np.where(LULC == fc)] = 1

    fuel_fhs_landscape = []
    fuel_fhs_incremental = []

    for d in range(len(ndm_fhs)):
        ndm_fh = ndm_fhs[d]
        fraction_fh = fraction_fhs[d]
        yield_fract = RC.Open_tiff_array(fraction_fh)
        date1 = ndmdates[d]
        year = '%d' % date1.year
        month = '%02d' % date1.month
        #        year = ndm_fh[-14:-10]
        #        month = ndm_fh[-9:-7]
        out_fh_l = out_folder + '\\fuel_prod_landscape_%s_%s.tif' % (year,
                                                                     month)
        out_fh_i = out_folder + '\\fuel_prod_incremental_%s_%s.tif' % (year,
                                                                       month)
        NDM = becgis.open_as_array(ndm_fh, nan_values=True)

        NDM_fuel_incremental = NDM * .05 * fuel_mask * yield_fract * area_ha / 1e6
        NDM_fuel_landscape = NDM * .05 * fuel_mask * (
            1 - yield_fract) * area_ha / 1e6
        DC.Save_as_tiff(out_fh_i, NDM_fuel_incremental, geo_out)
        DC.Save_as_tiff(out_fh_l, NDM_fuel_landscape, geo_out)
        fuel_fhs_landscape.append(out_fh_l)
        fuel_fhs_incremental.append(out_fh_i)

    return fuel_fhs_landscape, fuel_fhs_incremental
def lu_type_sum(data_fh, lu_fh, AREA, lu_dict, convert=None):
    LULC = RC.Open_tiff_array(lu_fh)
    in_data = becgis.open_as_array(data_fh, nan_values=True)
    #    in_data = RC.Open_tiff_array(data_fh)
    if convert == 'mm_to_km3':
        in_data *= AREA / 1e6
    out_data = {}
    for lu_class in list(lu_dict.keys()):
        mask = [LULC == value for value in lu_dict[lu_class]]
        mask = (np.sum(mask, axis=0)).astype(bool)
        out_data[lu_class] = np.nansum(in_data[mask])
    return out_data
def recycle(output_folder, et_bg_fhs, recy_ratio, lu_fh, et_type):
    Data_Path_rec = "temp_et_recycle"
    out_folder = os.path.join(output_folder, Data_Path_rec)
    geo_out, proj, size_X, size_Y = RC.Open_array_info(lu_fh)
    if not os.path.exists(out_folder):
        os.mkdir(out_folder)
    recycle_fhs = []
    for et_fh in et_bg_fhs:
        out_fh = out_folder + "\\recycled_et_" + et_type + et_fh[
            -11:-4] + ".tif"
        et = becgis.open_as_array(et_fh, nan_values=True)
        et_recy = et * recy_ratio
        DC.Save_as_tiff(out_fh, et_recy, geo_out)
        recycle_fhs.append(out_fh)
    return recycle_fhs
Beispiel #9
0
def get_timeseries_raster(ds1_fhs, ds1_dates, coordinates, output_fh, unit = 'm3/s'):
    """
    Substract a timeseries from a set of raster files. Store results in a csv-file.
    
    Parameters
    ----------
    ds1_fhs : 1dnarray
        List containing filehandles to georeferenced raster files.
    ds1_dates : 1dnarray
        List containing datetime.date or datetime.datetime objects corresponding
        to the filehandles in ds1_fhs. Lenght should be equal to ds1_fhs.
    coordinates : tuple
        Tuple with the latitude and longitude, (lat, lon).
    output_fh : str
        Filehandle pointing to a csv-file.
    unit : str, optional
        String indicating the unit of the data, default is 'm3/s'.
    """
    ds1_values = list()   
    xpixel, ypixel = pixelcoordinates(coordinates[0], coordinates[1], ds1_fhs[0])
    
    if np.any([np.isnan(xpixel), np.isnan(ypixel)]):
        print("Coordinates ({0}) not on the map".format(coordinates))
    else:
        for date in ds1_dates:
            ds1_values.append(becgis.open_as_array(ds1_fhs[ds1_dates == date][0], nan_values = True)[ypixel, xpixel])
        
        ds1_values = np.array(ds1_values)    
        
        csv_file = open(output_fh, 'wb')
        writer = csv.writer(csv_file, delimiter=';')
        
        writer.writerow(['lat:',coordinates[0], 'lon:', coordinates[1], unit])
        writer.writerow(['datetime','year','month','day','data'])
        
        for date in ds1_dates:
            
            year = date.year
            month = date.month
            day = date.day
            
            dt = datetime.datetime(year, month, day, 0,0,0)
            data = ds1_values[ds1_dates == date][0]
            writer.writerow([dt, year, month, day, data])
        
        csv_file.close()
def correct_var(metadata,
                complete_data,
                output_dir,
                formula,
                new_var,
                slope=False,
                bounds=(0, [1.0, 1., 12.])):

    var = split_form(formula)[0][-1]

    a, x0 = calc_var_correction(metadata,
                                complete_data,
                                output_dir,
                                formula=formula,
                                slope=slope,
                                plot=True,
                                bounds=bounds)

    for date, fn in zip(complete_data[var][1], complete_data[var][0]):

        geo_info = becgis.get_geoinfo(fn)

        data = becgis.open_as_array(fn, nan_values=True)

        x = calc_delta_months(x0, date)

        fraction = a[0] * (np.cos(
            (x - a[2]) * (np.pi / 6)) * 0.5 + 0.5) + (a[1] * (1 - a[0]))

        data *= fraction

        folder = os.path.join(output_dir, metadata['name'], 'data', new_var)

        if not os.path.exists(folder):
            os.makedirs(folder)

        bla = os.path.split(fn)[1].split('_')[-1]
        filen = 'supply_sw_' + bla[0:6] + '.tif'
        fn = os.path.join(folder, filen)

        becgis.create_geotiff(fn, data, *geo_info)

    meta = becgis.sort_files(folder, [-10, -6], month_position=[-6, -4])[0:2]
    return a, meta
def calc_non_utilizable(P, ET, fractions_fh):
    """
    Calculate non utilizable outflow.
    
    Parameters
    ----------
    P : ndarray
        Array with the volumes of precipitation per pixel.
    ET : ndarray
        Array with the volumes of evapotranspiration per pixel.
    fractions_fh : str
        Filehandle pointing to a map with fractions indicating how much of the
        (P-ET) difference is non-utilizable.
    
    Returns
    -------
    non_utilizable_runoff : float
        The total volume of non_utilizable runoff.
    """
    fractions = becgis.open_as_array(fractions_fh, nan_values=True)
    non_utilizable_runoff = np.nansum((P - ET) * fractions)
    return non_utilizable_runoff
def diagnosis_wp(metadata, complete_data, output_dir, waterpix):

    output_dir = os.path.join(output_dir)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    LU = becgis.open_as_array(metadata['lu'], nan_values=True)

    #    S = SortWaterPix(waterpix, 'Supply_M', output_dir)
    #    becgis.match_proj_res_ndv(metadata['lu'], becgis.list_files_in_folder(S), os.path.join(output_dir, "s_matched"))
    #    complete_data['supply'] = becgis.sort_files(os.path.join(output_dir, "s_matched"), [-10,-6], month_position = [-6,-4])[0:2]

    common_dates = becgis.common_dates([
        complete_data['p'][1], complete_data['et'][1], complete_data['tr'][1],
        complete_data['etb'][1]
    ])

    becgis.assert_proj_res_ndv([
        complete_data['p'][0], complete_data['et'][0], complete_data['tr'][0]
    ])

    balance_km3 = np.array([])

    p_km3 = np.array([])
    et_km3 = np.array([])
    ro_km3 = np.array([])

    balance_mm = np.array([])

    p_mm = np.array([])
    et_mm = np.array([])
    ro_mm = np.array([])

    area = becgis.map_pixel_area_km(metadata['lu'])

    for date in common_dates:

        print(date)

        P = complete_data['p'][0][complete_data['p'][1] == date][0]
        ET = complete_data['et'][0][complete_data['et'][1] == date][0]
        RO = complete_data['tr'][0][complete_data['tr'][1] == date][0]

        factor = 0.001 * 0.001 * area

        p = becgis.open_as_array(P, nan_values=True)
        et = becgis.open_as_array(ET, nan_values=True)
        ro = becgis.open_as_array(RO, nan_values=True)

        p[np.isnan(LU)] = et[np.isnan(LU)] = ro[np.isnan(LU)] = np.nan

        balance_km3 = np.append(
            balance_km3,
            np.nansum(p * factor) - np.nansum(et * factor) -
            np.nansum(ro * factor))
        p_km3 = np.append(p_km3, np.nansum(p * factor))
        et_km3 = np.append(et_km3, np.nansum(et * factor))
        ro_km3 = np.append(ro_km3, np.nansum(ro * factor))

        balance_mm = np.append(balance_mm,
                               np.nanmean(p) - np.nanmean(et) - np.nanmean(ro))
        p_mm = np.append(p_mm, np.nanmean(p))
        et_mm = np.append(et_mm, np.nanmean(et))
        ro_mm = np.append(ro_mm, np.nanmean(ro))

    relative_storage = np.cumsum(balance_km3) / np.mean(p_km3)

    ##
    # BASIC BASINSCALE WATERBALANCE (PRE-SHEETS)
    ##
    fig = plt.figure(1, figsize=(9, 6))
    plt.clf()
    fig.patch.set_alpha(0.7)

    ax2 = plt.gca()
    ax = ax2.twinx()

    ax2.bar(common_dates, relative_storage, width=25, color='#3ee871')

    ax2.grid(b=True, which='Major', color='0.65', linestyle='--', zorder=0)
    ax.bar([common_dates[0]], [0],
           label='$\sum dS / \overline{P}$',
           color='#3ee871')
    ax.plot(common_dates, np.cumsum(balance_km3), label='$\sum dS$')
    ax.plot(common_dates, np.cumsum(p_km3), label='$\sum (P)$')
    ax.plot(common_dates,
            np.cumsum(et_km3) + np.cumsum(ro_km3),
            label='$\sum (ET + RO)$')

    box = ax.get_position()
    ax.set_position(
        [box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9])
    ax2.set_position(
        [box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9])

    ax.legend(loc='upper center',
              bbox_to_anchor=(0.5, -0.1),
              fancybox=True,
              shadow=True,
              ncol=5)

    plt.suptitle(
        '$\sum P = {0:.1f}\;{4}, \\ \sum ET = {1:.1f}\;{4}, \sum RO = {2:.1f}\;{4}, \sum dS = {3:.1f}\;{4}$'
        .format(np.sum(p_km3), np.sum(et_km3), np.sum(ro_km3),
                np.sum(balance_km3), r"km^{3}"))
    plt.title(
        '{0}, ${5} = {2:.3f}\;{6}, {7} = {3:.3f}, dt = {4}\;months$'.format(
            metadata['name'], np.sum(balance_km3), np.mean(balance_km3),
            np.mean(relative_storage), len(p_km3), r"\overline{dS}", r"km^{3}",
            r"\overline{\sum dS / \overline{P}}"))
    plt.xlabel('Time')

    ax2.set_ylabel('Relative Storage [months of $\overline{P}$]')
    ax.set_ylabel('Stock [$km^{3}$]')
    #plt.savefig(os.path.join(output_dir, 'balance_{0}'.format(metadata['name'])))

    fig = plt.figure(2)
    plt.clf()

    ax2 = plt.gca()
    ax = ax2.twinx()

    ax2.plot(common_dates, p_mm, common_dates, et_mm, common_dates, ro_mm)
    ax.plot(common_dates, np.cumsum(balance_mm), 'k')
Beispiel #13
0
def compare_rasters2rasters_per_lu(ds1_fhs, ds1_dates, ds2_fhs, ds2_dates, lu_fh, output_dir, dataset_names = ["DS1", "DS2"], class_dictionary = None, no_of_classes = 6):
    """
    Compare two raster datasets with eachother per different landuse categories.
    
    Parameters
    ----------
    ds1_fhs : ndarray
        Array with strings pointing to maps of dataset 1.
    ds1_dates : ndarray
        Array with same shape as ds1_fhs, containing datetime.date objects.
    ds2_fhs : ndarray
        Array with strings pointing to maps of dataset 2.
    ds2_dates : ndarray
        Array with same shape as ds2_fhs, containing datetime.date objects.
    lu_fh : str
        Pointer to a landusemap.
    output_dir : str
        Map to save results.
    dataset_names : list, optional
        List with two strings describing the names of the two datasets.
    class_dictionary : dict
        Dictionary specifying all the landuse categories.
    no_of_classes : int
        The 'no_of_classes' most dominant classes in the the lu_fh are compared, the rest is ignored.
    
    """
    LUCS = becgis.open_as_array(lu_fh, nan_values = True)
    DS1 = becgis.open_as_array(ds1_fhs[0], nan_values = True)
    DS2 = becgis.open_as_array(ds2_fhs[0], nan_values = True)
    
    DS1[np.isnan(DS2)] = np.nan
    LUCS[np.isnan(DS1)] = np.nan
    
    classes, counts = np.unique(LUCS[~np.isnan(LUCS)], return_counts = True)
    counts_sorted = np.sort(counts)[-no_of_classes:]
    selected_lucs = [classes[counts == counter][0] for counter in counts_sorted]
    
    driver, NDV, xsize, ysize, GeoT, Projection = becgis.get_geoinfo(lu_fh)
    becgis.create_geotiff(lu_fh.replace('.tif','_.tif'), LUCS, driver, NDV, xsize, ysize, GeoT, Projection)

    common_dates = becgis.common_dates([ds1_dates, ds2_dates])
    
    ds1_totals = np.array([])
    ds2_totals = np.array([])
    
    DS1_per_class = dict()
    DS2_per_class = dict()
    
    for date in common_dates:
        
        DS1 = becgis.open_as_array(ds1_fhs[ds1_dates == date][0], nan_values = True)
        DS2 = becgis.open_as_array(ds2_fhs[ds2_dates == date][0], nan_values = True)
        
        for clss in selected_lucs:
            
            if clss in list(DS1_per_class.keys()):
                DS1_per_class[clss] = np.append(DS1_per_class[clss], np.nanmean(DS1[LUCS == clss]))
            else:
                DS1_per_class[clss] = np.array([np.nanmean(DS1[LUCS == clss])])
                
            if clss in list(DS2_per_class.keys()):
                DS2_per_class[clss] = np.append(DS2_per_class[clss], np.nanmean(DS2[LUCS == clss]))
            else:
                DS2_per_class[clss] = np.array([np.nanmean(DS2[LUCS == clss])])

        ds1_totals = np.append(ds1_totals, np.nanmean(DS1))
        ds2_totals = np.append(ds2_totals, np.nanmean(DS2))
        
        print("Finished {0}, going to {1}".format(date, common_dates[-1]))
    
    for clss in selected_lucs:
        
        if class_dictionary is None:
            plot_scatter_series(DS1_per_class[clss], DS2_per_class[clss], dataset_names[0], dataset_names[1], clss, output_dir)
        else:
            cats = {v[0]: k for k, v in list(class_dictionary.items())}
            plot_scatter_series(DS1_per_class[clss], DS2_per_class[clss], dataset_names[0], dataset_names[1], cats[clss], output_dir)
            
    plot_scatter_series(ds1_totals, ds2_totals, dataset_names[0], dataset_names[1], "Total Area", output_dir)

    if class_dictionary is not None:
        output_fh = os.path.join(output_dir, 'landuse_percentages.png')
        driver, NDV, xsize, ysize, GeoT, Projection = becgis.get_geoinfo(lu_fh)
        becgis.create_geotiff(lu_fh.replace('.tif','_.tif'), LUCS, driver, NDV, xsize, ysize, GeoT, Projection)
        becgis.plot_category_areas(lu_fh.replace('.tif','_.tif'), class_dictionary, output_fh, area_treshold = 0.01)
        os.remove(lu_fh.replace('.tif','_.tif'))
Beispiel #14
0
def compare_rasters2rasters(ds1_fhs, ds1_dates, ds2_fhs, ds2_dates, output_dir = None, dataset_names = None, data_treshold = 0.75):
    """ 
    Compare two series of raster maps by computing
    the relative bias, RMAE, Pearson-correlation coefficient and
    the Nash-Sutcliffe coefficient per pixel.
    
    Parameters
    ----------
    ds1_fhs : list
        list pointing to georeferenced raster files of dataset 1.
    ds1_dates : list
        list corresponding to ds1_fhs specifying the dates.
    ds2_fhs : list
        list pointing to georeferenced raster files of dataset 2.
    ds2_dates : list
        list corresponding to ds2_fhs specifying the dates.
    quantity_unit  : list, optional
        list of two strings describing the quantity and unit of the data. e.g. ['Precipitation', 'mm/month'].
    dataset_names : list, optional
        list of strings describing the names of the datasets. e.g. ['CHIRPS', 'ERA-I'].
    output_dir : list, optional
        directory to store some results, i.e. (1) a graph of the spatially averaged datasets trough time and the
        bias and (2) 4 geotiffs showing the bias, nash-sutcliffe coefficient, pearson coefficient and rmae per pixel.
    data_treshold : float, optional
        pixels with less than data_treshold * total_number_of_samples actual values are set to no-data, i.e. pixels with
        too few data points are ignored.
        
    Returns
    -------
    results : dict
        dictionary with four keys (relative bias, RMAE, Pearson-correlation coefficient and 
        the Nash-Sutcliffe) with 2dnarrays of the values per pixel.
        
    Examples
    --------
    >>> results = compare_rasters2rasters(ds1_fhs, ds1_dates, ds2_fhs, ds2_dates, 
                                          output_dir = r"C:/Desktop/", quantity_unit = ["P", "mm/month"], 
                                          dataset_names = ["CHIRPS", "TRMM"])
    """
    becgis.assert_proj_res_ndv([ds1_fhs, ds2_fhs])
    
    if dataset_names is None:
        dataset_names = ['DS1','DS2']
    
    driver, NDV, xsize, ysize, GeoT, Projection = becgis.get_geoinfo(ds1_fhs[0])
    
    common_dates = becgis.common_dates([ds1_dates, ds2_dates])
    
    diff_sum = np.zeros((ysize,xsize))
    non_nans = np.zeros((ysize,xsize))
    
    progress = 0 
    samples = len(common_dates)
    
    for date in common_dates:
        
        DS1 = becgis.open_as_array(ds1_fhs[ds1_dates == date][0], nan_values = True)
        DS2 = becgis.open_as_array(ds2_fhs[ds2_dates == date][0], nan_values = True)
        
        DS1[np.isnan(DS2)] = np.nan
        DS2[np.isnan(DS1)] = np.nan
        
        non_nans[~np.isnan(DS1)] += np.ones((ysize,xsize))[~np.isnan(DS1)]
        
        diff = (DS1 - DS2)**2
        diff_sum[~np.isnan(DS1)] += diff[~np.isnan(DS1)]
        
        progress += 1
        print("progress: {0} of {1} finished".format(progress, samples))

    diff_sum[non_nans <= data_treshold*samples] = np.nan
    results = dict()
    results['rmse'] = np.where(non_nans == 0., np.nan, np.sqrt(diff_sum / non_nans))
    
    startdate = common_dates[0].strftime('%Y%m%d')
    enddate = common_dates[-1].strftime('%Y%m%d')
    
    path = os.path.join(output_dir, 'spatial_errors')
    if not os.path.exists(path):
        os.makedirs(path)
        
    if output_dir is not None:
        for varname in list(results.keys()):
            fh = os.path.join(path, '{0}_{1}_vs_{2}_{3}_{4}.tif'.format(varname, dataset_names[0], dataset_names[1], startdate, enddate))
            becgis.create_geotiff(fh, results[varname], driver, NDV, xsize, ysize, GeoT, Projection)

    return results 
Beispiel #15
0
def compare_rasters2stations(ds1_fhs, ds1_dates, station_dict, output_dir, station_names = None, quantity_unit = None, dataset_names = None, method = 'cubic', min_records = 1):
    """
    Compare a series of raster maps with station time series by computing
    the relative bias, RMAE, Pearson-correlation coefficient and 
    the Nash-Sutcliffe coefficient for each station.
    
    Parameters
    ----------
    ds1_fhs : 1dnarray
        List containing filehandles to georeferenced raster files.
    ds1_dates : 1dnarray
        List containing datetime.date or datetime.datetime objects corresponding
        to the filehandles in ds1_fhs. Lenght should be equal to ds1_fhs.
    station_dict : dictionary
        Dictionary containing coordinates of stations and timeseries. See examples
        below for an example
    output_dir : str, optional
        Directory to store several results, i.e. (1) a csv file to load in a GIS program, 
        (2) interpolated maps showing the various error indicators spatially and (3)
        scatter plots for all the stations.
    station_names : dictionary, optional
        Dictionary containing names of the respective stations which can be added to the csv-file, see
        Examples for more information.
    quantity_unit : list, optional
        List of two strings describing the quantity and unit of the data.
    dataset_name : list, optional
        List of strings describing the names of the datasets.
    method : str, optional
        Method used for interpolation of the error-indicators, i.e.: 'linear', 'nearest' or 'cubic' (default).
    
    Returns
    -------
    results : dictionary
        Dictionary containing several error indicators per station.

    Examples
    --------
    
    >>> station_dict = {(lat1, lon1): [(datetime.date(year, month, day), data_value), 
                                       (datetime.date(year, month, day), data_value), 
                                        etc.],
                        (lat2, lon2): [(datetime.date(year, month, day), data_value), 
                                       (datetime.date(year, month, day), data_value), 
                                        etc.],
                         etc.}
                    
    >>> station_names = {(lat1,lon1): 'stationname1', (lat2,lon2): 'stationname2', etc.}
    
    >>> results = compare_rasters2stations(ds1_fhs, ds1_dates, station_dict, output_dir = r"C:/Desktop",
                                station_names = None, quantity_unit = ["P", "mm/month"], 
                                dataset_names = ["CHIRPS", "Meteo Stations"], 
                                method = 'cubic')
    """
    results = dict()
    pixel_coordinates = list()
    
    if dataset_names is None:
        dataset_names = ['Spatial', 'Station']
    if quantity_unit is not None:
        quantity_unit[1] = r'[' + quantity_unit[1] + r']'
    else:
        quantity_unit = ['data', '']
        
    becgis.assert_proj_res_ndv([ds1_fhs])
    no_of_stations = len(list(station_dict.keys()))
    ds1_dates = becgis.convert_datetime_date(ds1_dates, out = 'datetime')

    for i, station in enumerate(station_dict.keys()):
        
        station_dates, station_values = unzip(station_dict[station])
        common_dates = becgis.common_dates([ds1_dates, station_dates])
        sample_size = common_dates.size
        
        if sample_size >= min_records:
            ds1_values = list()
            xpixel, ypixel = pixelcoordinates(station[0], station[1], ds1_fhs[0])
            
            if np.any([np.isnan(xpixel), np.isnan(ypixel)]):
                print("Skipping station ({0}), cause its not on the map".format(station))
                continue
            else:
                for date in common_dates:
                    ds1_values.append(becgis.open_as_array(ds1_fhs[ds1_dates == date][0], nan_values = True)[ypixel, xpixel])
                    
                common_station_values = [station_values[station_dates == date][0] for date in common_dates]
                
                results[station] = pairwise_validation(ds1_values, common_station_values)
                results[station] += (sample_size,)
                         
                pixel_coordinates.append((xpixel, ypixel))
                #m, b = np.polyfit(ds1_values, common_station_values, 1)  
                
                path_scatter = os.path.join(output_dir, 'scatter_plots')
                if not os.path.exists(path_scatter):
                    os.makedirs(path_scatter)
                    
                path_ts = os.path.join(output_dir, 'time_series')
                if not os.path.exists(path_ts):
                    os.makedirs(path_ts)
                    
                path_int = os.path.join(output_dir, 'interp_errors')
                if not os.path.exists(path_int):
                    os.makedirs(path_int)
                
                xlabel = '{0} {1} {2}'.format(dataset_names[0], quantity_unit[0], quantity_unit[1])
                ylabel = '{0} {1} {2}'.format(dataset_names[1], quantity_unit[0], quantity_unit[1])
                if station_names is not None:
                    title = station_names[station]
                    fn = os.path.join(path_scatter,'{0}_vs_{1}.png'.format(station_names[station], dataset_names[0]))
                    fnts = os.path.join(path_ts,'{0}_vs_{1}.png'.format(station_names[station], dataset_names[0]))
                else:
                    title = station
                    fn = os.path.join(path_scatter,'{0}_vs_station_{1}.png'.format(dataset_names[0],i))
                    fnts = os.path.join(path_ts,'{0}_vs_station_{1}.png'.format(dataset_names[0],i)) 
                suptitle = 'pearson: {0:.5f}, rmse: {1:.5f}, ns: {2:.5f}, bias: {3:.5f}, n: {4:.0f}'.format(results[station][0],results[station][1],results[station][2],results[station][3],results[station][4])
                plot_scatter_series(ds1_values, common_station_values, xlabel, ylabel, title, fn, suptitle = suptitle, dates = common_dates)
    
                xaxis_label = '{0} {1}'.format(quantity_unit[0], quantity_unit[1])
                xlabel = '{0}'.format(dataset_names[0])
                ylabel = '{0}'.format(dataset_names[1])
                plot_time_series(ds1_values,common_station_values,common_dates,xlabel,ylabel,xaxis_label, title, fnts, suptitle = suptitle)
                
                print("station {0} ({3}) of {1} finished ({2} matching records)".format(i+1, no_of_stations, sample_size, title))
        else:
            print("____station {0} of {1} skipped____ (less than {2} matching records)".format(i+1, no_of_stations, min_records))
            continue
    
    n = len(results)
    csv_filename = os.path.join(output_dir, '{0}stations_vs_{1}_indicators.csv'.format(n, dataset_names[0]))
    with open(csv_filename, 'wb') as csv_file:
        writer = csv.writer(csv_file, delimiter=';')
        writer.writerow(['longitude','latitude','station_id','pearson','rmse','nash_sutcliffe','bias', 'no_of_samples'])
        for station in list(results.keys()):
            writer.writerow([station[1], station[0], station_names[station], results[station][0],results[station][1],results[station][2],results[station][3],results[station][4]])

    rslt = {'Relative Bias':list(),'RMSE':list(),'Pearson Coefficient':list(),'Nash-Sutcliffe Coefficient':list(),'Number Of Samples':list()}

    for value in list(results.values()):
        rslt['Relative Bias'].append(value[3])
        rslt['RMSE'].append(value[1])
        rslt['Pearson Coefficient'].append(value[0])
        rslt['Nash-Sutcliffe Coefficient'].append(value[2])
        rslt['Number Of Samples'].append(value[4])

    for key, value in list(rslt.items()):
        title = '{0}'.format(key)
        print(title)
        if key is 'RMSE':
            xlabel = '{0} [mm/month]'.format(key)
        else:
            xlabel = key
        value = np.array(value)
        value = value[(~np.isnan(value)) & (~np.isinf(value))]
        suptitle = 'mean: {0:.5f}, std: {1:.5f}, n: {2}'.format(np.nanmean(value), np.nanstd(value), n)
        print(value)
        plot_histogram(value[(~np.isnan(value)) & (~np.isinf(value))], title, xlabel, output_dir, suptitle = suptitle)
    
    driver, NDV, xsize, ysize, GeoT, Projection = becgis.get_geoinfo(ds1_fhs[0])
    dummy_map = becgis.open_as_array(ds1_fhs[0])
    grid = np.mgrid[0:ysize, 0:xsize]
    var_names = ['pearson', 'rmse', 'ns', 'bias', 'no_of_samples']

    for i, var in enumerate(unzip(list(results.values()))):
        xy = np.array(pixel_coordinates)[~np.isnan(var)]
        z = var[~np.isnan(var)]
        interpolation_field = interpolate.griddata(xy, z, (grid[1], grid[0]), method=method, fill_value = np.nanmean(z))
        interpolation_field[dummy_map == NDV] = NDV
        fh = os.path.join(path_int, '{0}_{1}stations_vs_{2}.tif'.format(var_names[i], len(xy), dataset_names[0]))
        becgis.create_geotiff(fh, interpolation_field, driver, NDV, xsize, ysize, GeoT, Projection)

    return results
def calc_sheet1(entries,
                lu_fh,
                sheet1_lucs,
                recycling_ratio,
                q_outflow,
                q_out_avg,
                output_folder,
                q_in_sw,
                q_in_gw=0.,
                q_in_desal=0.,
                q_out_sw=0.,
                q_out_gw=0.):
    """
    Calculate the required values to plot Water Accounting Plus Sheet 1.
    
    Parameters
    ----------
    entries : dict
        Dictionary with several filehandles, also see examples below.
    lu_fh : str
        Filehandle pointing to the landuse map.
    sheet1_lucs : dict
        Dictionary sorting different landuse classes into categories.
    recycling_ratio : float
        Value indicating the recycling ratio.
    q_outflow : float
        The outflow of the basin.
    q_out_avg : float
        The longterm average outflow.
    output_folder : str
        Folder to store results.
    q_in_sw : float, optional
        Surfacewater inflow into the basin. Default is 0.0.
    q_in_gw : float, optional
        Groundwater inflow into the basin. Default is 0.0.
    q_in_desal : float, optional
        Desalinised water inflow into the basin. Default is 0.0.
    q_out_sw : float, optional
        Additional surfacewater outflow from basin. Default is 0.0.
    q_out_gw : float, optional
        Groundwater outflow from the basin. Default is 0.0.
        
    Returns
    -------
    results : dict
        Dictionary containing necessary variables for Sheet 1.
    """
    results = dict()

    LULC = becgis.open_as_array(lu_fh, nan_values=True)
    P = becgis.open_as_array(entries['P'], nan_values=True)
    ETgreen = becgis.open_as_array(entries['ETgreen'], nan_values=True)
    ETblue = becgis.open_as_array(entries['ETblue'], nan_values=True)

    pixel_area = becgis.map_pixel_area_km(lu_fh)

    gray_water_fraction = calc_basinmean(entries['WPL'], lu_fh)
    ewr_percentage = calc_basinmean(entries['EWR'], lu_fh)

    P[np.isnan(LULC)] = ETgreen[np.isnan(LULC)] = ETblue[np.isnan(
        LULC)] = np.nan
    P, ETgreen, ETblue = np.array([P, ETgreen, ETblue]) * 0.000001 * pixel_area

    ET = np.nansum([ETblue, ETgreen], axis=0)

    results['et_advection'], results['p_advection'], results[
        'p_recycled'], results['dS'] = calc_wb(P,
                                               ET,
                                               q_outflow,
                                               recycling_ratio,
                                               q_in_sw=q_in_sw,
                                               q_in_gw=q_in_gw,
                                               q_in_desal=q_in_desal,
                                               q_out_sw=q_out_sw,
                                               q_out_gw=q_out_gw)

    results['non_recoverable'] = gray_water_fraction * (
        q_outflow + q_out_sw
    )  # Mekonnen and Hoekstra (2015), Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water
    results['reserved_outflow_demand'] = q_out_avg * ewr_percentage

    results['other'] = 0.0

    landscape_et = calc_ETs(ETgreen, lu_fh, sheet1_lucs)
    incremental_et = calc_ETs(ETblue, lu_fh, sheet1_lucs)

    results['manmade'] = incremental_et['Managed']
    results['natural'] = incremental_et['Modified'] + incremental_et[
        'Protected'] + incremental_et['Utilized']

    other_fractions = {
        'Modified': 0.00,
        'Managed': 1.00,
        'Protected': 0.00,
        'Utilized': 0.00
    }

    non_recoverable_fractions = {
        'Modified': 0.00,
        'Managed': 1.00,
        'Protected': 0.00,
        'Utilized': 0.00
    }

    results['uf_plu'], results['uf_ulu'], results['uf_mlu'], results[
        'uf_mwu'] = calc_utilizedflow(incremental_et, results['other'],
                                      results['non_recoverable'],
                                      other_fractions,
                                      non_recoverable_fractions)

    net_inflow = results['p_recycled'] + results[
        'p_advection'] + q_in_sw + q_in_gw + q_in_desal + results['dS']
    consumed_water = np.nansum(list(landscape_et.values())) + np.nansum(
        list(incremental_et.values())
    ) + results['other'] + results['non_recoverable']
    non_consumed_water = net_inflow - consumed_water

    results['non_utilizable_outflow'] = min(
        non_consumed_water,
        max(0.0, calc_non_utilizable(P, ET, entries['Fractions'])))
    results['reserved_outflow_actual'] = min(
        non_consumed_water - results['non_utilizable_outflow'],
        results['reserved_outflow_demand'])
    results['utilizable_outflow'] = max(
        0.0, non_consumed_water - results['non_utilizable_outflow'] -
        results['reserved_outflow_actual'])

    results['landscape_et_mwu'] = landscape_et['Managed']
    results['landscape_et_mlu'] = landscape_et['Modified']
    results['landscape_et_ulu'] = landscape_et['Utilized']
    results['landscape_et_plu'] = landscape_et['Protected']
    results['q_outflow'] = q_outflow
    results['q_in_sw'] = q_in_sw
    results['q_in_gw'] = q_in_gw
    results['q_in_desal'] = q_in_desal
    results['q_out_sw'] = q_out_sw
    results['q_out_gw'] = q_out_gw

    return results
def livestock_feed(output_folder, lu_fh, AREA, ndm_fhs, feed_dict, live_feed,
                   cattle_fh, fraction_fhs, ndmdates):
    """
    Calculate natural livestock feed production

    INPUTS
    ----------
    lu_fh : str
        filehandle for land use map
    ndm_fhs: nd array
        array of filehandles of NDM maps
    ndm_dates: nd array
        array of dates for NDM maps
    feed_dict: dict
        dictionnary 'pasture class':[list of LULC]
    feed_pct: dict
        dictionnary 'pasture class':[percent available as feed]
    cattle_fh : str
        filehandle for cattle map
    """
    Data_Path_Feed = "Feed"
    out_folder = os.path.join(output_folder, Data_Path_Feed)
    if not os.path.exists(out_folder):
        os.mkdir(out_folder)

    area_ha = AREA * 100
    LULC = RC.Open_tiff_array(lu_fh)
    #  cattle = RC.Open_tiff_array(cattle_fh)
    geo_out, proj, size_X, size_Y = RC.Open_array_info(lu_fh)

    f_pct = np.zeros(LULC.shape)
    for lu_type in list(feed_dict.keys()):
        classes = feed_dict[lu_type]
        mask = np.logical_or.reduce([LULC == value for value in classes])
        f_pct[mask] = live_feed[lu_type]
    feed_fhs_landscape = []
    feed_fhs_incremental = []
    for d in range(len(ndm_fhs)):
        ndm_fh = ndm_fhs[d]
        fraction_fh = fraction_fhs[d]
        date1 = ndmdates[d]
        year = '%d' % date1.year
        month = '%02d' % date1.month

        yield_fract = RC.Open_tiff_array(fraction_fh)

        out_fh_l = out_folder + '\\feed_prod_landscape_%s_%s.tif' % (year,
                                                                     month)
        out_fh_i = out_folder + '\\feed_prod_incremental_%s_%s.tif' % (year,
                                                                       month)
        #        out_fh2 = out_folder+'\\Feed_prod_pH_%s_%s.tif' %(year, month)
        NDM = becgis.open_as_array(ndm_fh, nan_values=True)
        NDM_feed = NDM * f_pct
        NDM_feed_incremental = NDM_feed * yield_fract * area_ha / 1e6
        NDM_feed_landscape = (NDM_feed * (1 - yield_fract)) * area_ha / 1e6
        DC.Save_as_tiff(out_fh_l, NDM_feed_landscape, geo_out)
        DC.Save_as_tiff(out_fh_i, NDM_feed_incremental, geo_out)
        #        NDM_feed_perHead = NDM_feed / cattle
        #        DC.Save_as_tiff(out_fh2, NDM_feed, geo_out)
        feed_fhs_landscape.append(out_fh_l)
        feed_fhs_incremental.append(out_fh_i)
    return feed_fhs_landscape, feed_fhs_incremental