def sieve(*_coconut_match_to_args, **_coconut_match_to_kwargs): _coconut_match_check = False if (_coconut.len(_coconut_match_to_args) == 1) and (_coconut.isinstance(_coconut_match_to_args[0], _coconut.abc.Iterable)): xs = _coconut.iter(_coconut_match_to_args[0]) _coconut_match_temp_0 = _coconut.tuple( _coconut_igetitem(xs, _coconut.slice(None, 1))) if (_coconut.len(_coconut_match_temp_0) == 1) and (not _coconut_match_to_kwargs): x = _coconut_match_temp_0[0] _coconut_match_check = True if not _coconut_match_check: _coconut_match_err = _coconut_MatchError( "pattern-matching failed for " "'def sieve([x] :: xs) = [x] :: sieve(n for n in xs if n % x)'" " in " + _coconut.repr(_coconut.repr(_coconut_match_to_args))) _coconut_match_err.pattern = 'def sieve([x] :: xs) = [x] :: sieve(n for n in xs if n % x)' _coconut_match_err.value = _coconut_match_to_args raise _coconut_match_err return _coconut_tail_call( _coconut.itertools.chain.from_iterable, (f() for f in (lambda: [x], lambda: sieve((n for n in xs if n % x)))))
def quick_sort(l): """Sort the input iterator, using the quick sort algorithm, and without using any data until necessary.""" _coconut_match_check = False _coconut_match_to = l if (_coconut.isinstance(_coconut_match_to, _coconut.abc.Iterable)): tail = _coconut.iter(_coconut_match_to) _coconut_match_iter_0 = _coconut.tuple(_coconut_igetitem(tail, _coconut.slice(None, 1))) if (_coconut.len(_coconut_match_iter_0) == 1): head = _coconut_match_iter_0[0] _coconut_match_check = True if _coconut_match_check: tail, tail_ = tee(tail) _coconut_yield_from = (_coconut.itertools.chain.from_iterable((_coconut_lazy_item() for _coconut_lazy_item in (lambda: quick_sort((x for x in tail if x < head)), lambda: (head,), lambda: quick_sort((x for x in tail_ if x >= head)))))) for _coconut_yield_item in _coconut_yield_from: yield _coconut_yield_item
def quick_sort(l): """Sort the input iterator using the quick sort algorithm.""" _coconut_match_to = l _coconut_match_check = False if _coconut.isinstance(_coconut_match_to, _coconut.abc.Iterable): tail = _coconut.iter(_coconut_match_to) _coconut_match_temp_0 = _coconut.tuple(_coconut_igetitem(tail, _coconut.slice(None, 1))) if _coconut.len(_coconut_match_temp_0) == 1: head = _coconut_match_temp_0[0] _coconut_match_check = True if _coconut_match_check: tail = reiterable(tail) left = (x for x in tail if x < head) right = (x for x in tail if x >= head) # By yielding nothing if the match falls through, we implicitly return an empty iterator. # Test cases: _coconut_yield_from = _coconut.itertools.chain.from_iterable((_coconut_func() for _coconut_func in (lambda: quick_sort(left), lambda: [head], lambda: quick_sort(right)))) for _coconut_yield_item in _coconut_yield_from: yield _coconut_yield_item
def create_space(name, func, *args): """Create a hyperopt space for the given parameter.""" _coconut_case_match_to_0 = func, args _coconut_case_match_check_0 = False _coconut_match_set_name_choices = _coconut_sentinel if _coconut.isinstance(_coconut_case_match_to_0, _coconut.abc.Iterable): _coconut_match_temp_0 = _coconut.tuple(_coconut_case_match_to_0) if (_coconut.len(_coconut_match_temp_0) == 2) and (_coconut_match_temp_0[0] == "choice") and (_coconut.isinstance(_coconut_match_temp_0[1], _coconut.abc.Sequence)) and (_coconut.len(_coconut_match_temp_0[1]) == 1): _coconut_match_set_name_choices = _coconut_match_temp_0[1][0] _coconut_case_match_check_0 = True if _coconut_case_match_check_0: if _coconut_match_set_name_choices is not _coconut_sentinel: choices = _coconut_match_set_name_choices if _coconut_case_match_check_0: return hp.choice(name, choices) if not _coconut_case_match_check_0: _coconut_match_set_name_start = _coconut_sentinel _coconut_match_set_name_stop = _coconut_sentinel _coconut_match_set_name_step = _coconut_sentinel if _coconut.isinstance(_coconut_case_match_to_0, _coconut.abc.Iterable): _coconut_match_temp_1 = _coconut.tuple(_coconut_case_match_to_0) if (_coconut.len(_coconut_match_temp_1) == 2) and (_coconut_match_temp_1[0] == "randrange") and (_coconut.isinstance(_coconut_match_temp_1[1], _coconut.abc.Sequence)) and (_coconut.len(_coconut_match_temp_1[1]) == 3): _coconut_match_set_name_start = _coconut_match_temp_1[1][0] _coconut_match_set_name_stop = _coconut_match_temp_1[1][1] _coconut_match_set_name_step = _coconut_match_temp_1[1][2] _coconut_case_match_check_0 = True if _coconut_case_match_check_0: if _coconut_match_set_name_start is not _coconut_sentinel: start = _coconut_match_set_name_start if _coconut_match_set_name_stop is not _coconut_sentinel: stop = _coconut_match_set_name_stop if _coconut_match_set_name_step is not _coconut_sentinel: step = _coconut_match_set_name_step if _coconut_case_match_check_0: if step != 1: raise ValueError("the hyperopt backend only supports a randrange step size of 1 (use bb.choice(name, range(start, stop, step)) instead)") # despite being called randint, hp.randint is exclusive return start + hp.randint(name, stop - start) if not _coconut_case_match_check_0: _coconut_match_set_name_a = _coconut_sentinel _coconut_match_set_name_b = _coconut_sentinel if _coconut.isinstance(_coconut_case_match_to_0, _coconut.abc.Iterable): _coconut_match_temp_2 = _coconut.tuple(_coconut_case_match_to_0) if (_coconut.len(_coconut_match_temp_2) == 2) and (_coconut_match_temp_2[0] == "uniform") and (_coconut.isinstance(_coconut_match_temp_2[1], _coconut.abc.Sequence)) and (_coconut.len(_coconut_match_temp_2[1]) == 2): _coconut_match_set_name_a = _coconut_match_temp_2[1][0] _coconut_match_set_name_b = _coconut_match_temp_2[1][1] _coconut_case_match_check_0 = True if _coconut_case_match_check_0: if _coconut_match_set_name_a is not _coconut_sentinel: a = _coconut_match_set_name_a if _coconut_match_set_name_b is not _coconut_sentinel: b = _coconut_match_set_name_b if _coconut_case_match_check_0: return hp.uniform(name, a, b) if not _coconut_case_match_check_0: _coconut_match_set_name_mu = _coconut_sentinel _coconut_match_set_name_sigma = _coconut_sentinel if _coconut.isinstance(_coconut_case_match_to_0, _coconut.abc.Iterable): _coconut_match_temp_3 = _coconut.tuple(_coconut_case_match_to_0) if (_coconut.len(_coconut_match_temp_3) == 2) and (_coconut_match_temp_3[0] == "normalvariate") and (_coconut.isinstance(_coconut_match_temp_3[1], _coconut.abc.Sequence)) and (_coconut.len(_coconut_match_temp_3[1]) == 2): _coconut_match_set_name_mu = _coconut_match_temp_3[1][0] _coconut_match_set_name_sigma = _coconut_match_temp_3[1][1] _coconut_case_match_check_0 = True if _coconut_case_match_check_0: if _coconut_match_set_name_mu is not _coconut_sentinel: mu = _coconut_match_set_name_mu if _coconut_match_set_name_sigma is not _coconut_sentinel: sigma = _coconut_match_set_name_sigma if _coconut_case_match_check_0: return hp.normal(name, mu, sigma) raise TypeError("invalid parameter {_coconut_format_0}".format(_coconut_format_0=(name)))
def create_space(name, func, *args): """Create a scikit-optimize space for the given parameter.""" name = py_str(name) _coconut_case_match_to_0 = func, args _coconut_case_match_check_0 = False _coconut_match_set_name_choices = _coconut_sentinel if _coconut.isinstance(_coconut_case_match_to_0, _coconut.abc.Iterable): _coconut_match_temp_0 = _coconut.tuple(_coconut_case_match_to_0) if (_coconut.len(_coconut_match_temp_0) == 2) and (_coconut_match_temp_0[0] == "choice") and (_coconut.isinstance( _coconut_match_temp_0[1], _coconut.abc.Sequence)) and (_coconut.len( _coconut_match_temp_0[1]) == 1): _coconut_match_set_name_choices = _coconut_match_temp_0[1][0] _coconut_case_match_check_0 = True if _coconut_case_match_check_0: if _coconut_match_set_name_choices is not _coconut_sentinel: choices = _coconut_match_set_name_choices if _coconut_case_match_check_0: return Categorical(choices, name=name) if not _coconut_case_match_check_0: _coconut_match_set_name_start = _coconut_sentinel _coconut_match_set_name_stop = _coconut_sentinel _coconut_match_set_name_step = _coconut_sentinel if _coconut.isinstance(_coconut_case_match_to_0, _coconut.abc.Iterable): _coconut_match_temp_1 = _coconut.tuple(_coconut_case_match_to_0) if (_coconut.len(_coconut_match_temp_1) == 2) and (_coconut_match_temp_1[0] == "randrange") and (_coconut.isinstance( _coconut_match_temp_1[1], _coconut.abc.Sequence)) and (_coconut.len( _coconut_match_temp_1[1]) == 3): _coconut_match_set_name_start = _coconut_match_temp_1[1][0] _coconut_match_set_name_stop = _coconut_match_temp_1[1][1] _coconut_match_set_name_step = _coconut_match_temp_1[1][2] _coconut_case_match_check_0 = True if _coconut_case_match_check_0: if _coconut_match_set_name_start is not _coconut_sentinel: start = _coconut_match_set_name_start if _coconut_match_set_name_stop is not _coconut_sentinel: stop = _coconut_match_set_name_stop if _coconut_match_set_name_step is not _coconut_sentinel: step = _coconut_match_set_name_step if _coconut_case_match_check_0: if step != 1: raise ValueError( "the scikit-optimize backend only supports a randrange step size of 1" ) stop -= 1 # scikit-optimize ranges are inclusive return Integer(start, stop, name=name) if not _coconut_case_match_check_0: _coconut_match_set_name_a = _coconut_sentinel _coconut_match_set_name_b = _coconut_sentinel if _coconut.isinstance(_coconut_case_match_to_0, _coconut.abc.Iterable): _coconut_match_temp_2 = _coconut.tuple(_coconut_case_match_to_0) if (_coconut.len(_coconut_match_temp_2) == 2) and (_coconut_match_temp_2[0] == "uniform") and (_coconut.isinstance( _coconut_match_temp_2[1], _coconut.abc.Sequence)) and (_coconut.len( _coconut_match_temp_2[1]) == 2): _coconut_match_set_name_a = _coconut_match_temp_2[1][0] _coconut_match_set_name_b = _coconut_match_temp_2[1][1] _coconut_case_match_check_0 = True if _coconut_case_match_check_0: if _coconut_match_set_name_a is not _coconut_sentinel: a = _coconut_match_set_name_a if _coconut_match_set_name_b is not _coconut_sentinel: b = _coconut_match_set_name_b if _coconut_case_match_check_0: return Real(a, b, name=name) raise TypeError("invalid parameter {_coconut_format_0}".format( _coconut_format_0=(name)))