Y = np.array([func(q) for q in qs]) Q = poly(*qs.T) out = np.array([Y.T * q1 for q1 in Q]).T.flatten() out = out / np.tile(val1, ns) return out try: _ = _cubature except: raise NotImplementedError("cubature not install properly") _cubature(f2, dim2, xmin, xmax, (), "h", abserr, relerr, norm, budget, True, val2, err2) shape = (dim1, ) + val.shape val2 = val2.reshape(shape[::-1]).T out = po.transpose(po.sum(poly * val2.T, -1)) if retall: return out, val2, val1, err2, err1 return val2 if __name__ == "__main__": import numpy as np import __init__ as cp import doctest x, y = cp.variable(2) doctest.testmod()
out = out/np.tile(val1, ns) return out try: _ = _cubature except: raise NotImplementedError( "cubature not install properly") _cubature(f2, dim2, xmin, xmax, (), "h", abserr, relerr, norm, budget, True, val2, err2) shape = (dim1,)+val.shape val2 = val2.reshape(shape[::-1]).T out = po.transpose(po.sum(poly*val2.T, -1)) if retall: return out, val2, val1, err2, err1 return val2 if __name__=="__main__": import numpy as np import __init__ as cp import doctest x, y = cp.variable(2) doctest.testmod()