Beispiel #1
0
def find_objects(input, max_label=0):
    """
    Find objects in a labeled array.

    Parameters
    ----------
    input : ndarray of ints
        Array containing objects defined by different labels.
    max_label : int, optional
        Maximum label to be searched for in `input`. If max_label is not
        given, the positions of all objects are returned.

    Returns
    -------
    object_slices : list of slices
        A list of slices, one for the extent of each labeled object.
        Slices correspond to the minimal parallelepiped that contains
        the object. If a number is missing, None is returned instead
        of a slice.

    See Also
    --------
    label, center_of_mass

    Notes
    -----
    This function is very useful for isolating a volume of interest inside
    a 3-D array, that cannot be "seen through".

    Examples
    --------
    >>> a = np.zeros((6,6), dtype=np.int)
    >>> a[2:4, 2:4] = 1
    >>> a[4, 4] = 1
    >>> a[:2, :3] = 2
    >>> a[0, 5] = 3
    >>> a
    array([[2, 2, 2, 0, 0, 3],
           [2, 2, 2, 0, 0, 0],
           [0, 0, 1, 1, 0, 0],
           [0, 0, 1, 1, 0, 0],
           [0, 0, 0, 0, 1, 0],
           [0, 0, 0, 0, 0, 0]])
    >>> ndimage.find_objects(a)
    [(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None)), (slice(0, 1, None), slice(5, 6, None))]
    >>> ndimage.find_objects(a, max_label=2)
    [(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None))]
    >>> ndimage.find_objects(a == 1, max_label=2)
    [(slice(2, 5, None), slice(2, 5, None)), None]

    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    if max_label < 1:
        max_label = input.max()
    return _nd_image.find_objects(input, max_label)
Beispiel #2
0
def find_objects(input, max_label=0):
    """
    Find objects in a labeled array.

    Parameters
    ----------
    input : ndarray of ints
        Array containing objects defined by different labels.
    max_label : int, optional
        Maximum label to be searched for in `input`. If max_label is not
        given, the positions of all objects are returned.

    Returns
    -------
    object_slices : list of slices
        A list of slices, one for the extent of each labeled object.
        Slices correspond to the minimal parallelepiped that contains
        the object. If a number is missing, None is returned instead
        of a slice.

    See Also
    --------
    label, center_of_mass

    Notes
    -----
    This function is very useful for isolating a volume of interest inside
    a 3-D array, that cannot be "seen through".

    Examples
    --------
    >>> a = np.zeros((6,6), dtype=np.int)
    >>> a[2:4, 2:4] = 1
    >>> a[4, 4] = 1
    >>> a[:2, :3] = 2
    >>> a[0, 5] = 3
    >>> a
    array([[2, 2, 2, 0, 0, 3],
           [2, 2, 2, 0, 0, 0],
           [0, 0, 1, 1, 0, 0],
           [0, 0, 1, 1, 0, 0],
           [0, 0, 0, 0, 1, 0],
           [0, 0, 0, 0, 0, 0]])
    >>> ndimage.find_objects(a)
    [(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None)), (slice(0, 1, None), slice(5, 6, None))]
    >>> ndimage.find_objects(a, max_label=2)
    [(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None))]
    >>> ndimage.find_objects(a == 1, max_label=2)
    [(slice(2, 5, None), slice(2, 5, None)), None]

    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    if max_label < 1:
        max_label = input.max()
    return _nd_image.find_objects(input, max_label)
Beispiel #3
0
def find_objects(input, max_label=0):
    """Find objects in a labeled array.

    The input must be an array with labeled objects. A list of slices
    into the array is returned that contain the objects. The list
    represents a sequence of the numbered objects. If a number is
    missing, None is returned instead of a slice. If max_label > 0, it
    gives the largest object number that is searched for, otherwise
    all are returned.
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError, 'Complex type not supported'
    if max_label < 1:
        max_label = input.max()
    return _nd_image.find_objects(input, max_label)
def find_objects(input, max_label = 0):
    """Find objects in a labeled array.

    The input must be an array with labeled objects. A list of slices
    into the array is returned that contain the objects. The list
    represents a sequence of the numbered objects. If a number is
    missing, None is returned instead of a slice. If max_label > 0, it
    gives the largest object number that is searched for, otherwise
    all are returned.
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError, 'Complex type not supported'
    if max_label < 1:
        max_label = input.max()
    return _nd_image.find_objects(input, max_label)