Beispiel #1
0
    def testArrayNumpyLabelled(self):
        input = {"a": []}
        output = ujson.loads(ujson.dumps(input), numpy=True, labelled=True)
        self.assertTrue((np.empty((1, 0)) == output[0]).all())
        self.assertTrue((np.array(["a"]) == output[1]).all())
        self.assertTrue(output[2] is None)

        input = [{"a": 42}]
        output = ujson.loads(ujson.dumps(input), numpy=True, labelled=True)
        self.assertTrue((np.array([42]) == output[0]).all())
        self.assertTrue(output[1] is None)
        self.assertTrue((np.array([u"a"]) == output[2]).all())

        input = [{"a": 42, "b": 31}, {"a": 24, "c": 99}, {"a": 2.4, "b": 78}]
        output = ujson.loads(ujson.dumps(input), numpy=True, labelled=True)
        expectedvals = np.array([42, 31, 24, 99, 2.4, 78], dtype=int).reshape((3, 2))
        self.assertTrue((expectedvals == output[0]).all())
        self.assertTrue(output[1] is None)
        self.assertTrue((np.array([u"a", "b"]) == output[2]).all())

        input = {1: {"a": 42, "b": 31}, 2: {"a": 24, "c": 99}, 3: {"a": 2.4, "b": 78}}
        output = ujson.loads(ujson.dumps(input), numpy=True, labelled=True)
        expectedvals = np.array([42, 31, 24, 99, 2.4, 78], dtype=int).reshape((3, 2))
        self.assertTrue((expectedvals == output[0]).all())
        self.assertTrue((np.array(["1", "2", "3"]) == output[1]).all())
        self.assertTrue((np.array(["a", "b"]) == output[2]).all())
Beispiel #2
0
    def testArrayNumpyLabelled(self):
        input = {'a': []}
        output = ujson.loads(ujson.dumps(input), numpy=True, labelled=True)
        self.assertTrue((np.empty((1, 0)) == output[0]).all())
        self.assertTrue((np.array(['a']) == output[1]).all())
        self.assertTrue(output[2] is None)

        input = [{'a': 42}]
        output = ujson.loads(ujson.dumps(input), numpy=True, labelled=True)
        self.assertTrue((np.array([42]) == output[0]).all())
        self.assertTrue(output[1] is None)
        self.assertTrue((np.array([u'a']) == output[2]).all())

        input = [{'a': 42, 'b':31}, {'a': 24, 'c': 99}, {'a': 2.4, 'b': 78}]
        output = ujson.loads(ujson.dumps(input), numpy=True, labelled=True)
        expectedvals = np.array([42, 31, 24, 99, 2.4, 78], dtype=int).reshape((3,2))
        self.assertTrue((expectedvals == output[0]).all())
        self.assertTrue(output[1] is None)
        self.assertTrue((np.array([u'a', 'b']) == output[2]).all())


        input = {1: {'a': 42, 'b':31}, 2: {'a': 24, 'c': 99}, 3: {'a': 2.4, 'b': 78}}
        output = ujson.loads(ujson.dumps(input), numpy=True, labelled=True)
        expectedvals = np.array([42, 31, 24, 99, 2.4, 78], dtype=int).reshape((3,2))
        self.assertTrue((expectedvals == output[0]).all())
        self.assertTrue((np.array(['1','2','3']) == output[1]).all())
        self.assertTrue((np.array(['a', 'b']) == output[2]).all())
Beispiel #3
0
def from_json(cls, json, orient="columns", dtype=None, numpy=True):
    """
    Convert JSON string to DataFrame

    Parameters
    ----------
    json : The JSON string to parse.
    orient : {'split', 'records', 'index', 'columns', 'values'},
             default 'columns'
        The format of the JSON string
        split : dict like
            {index -> [index], columns -> [columns], data -> [values]}
        records : list like [{column -> value}, ... , {column -> value}]
        index : dict like {index -> {column -> value}}
        columns : dict like {column -> {index -> value}}
        values : just the values array
    dtype : dtype of the resulting DataFrame
    nupmpy: direct decoding to numpy arrays. default True but falls back
        to standard decoding if a problem occurs.

    Returns
    -------
    result : DataFrame
    """
    df = None

    if dtype is not None and orient == "split":
        numpy = False

    if numpy:
        try:
            if orient == "columns":
                args = loads(json, dtype=dtype, numpy=True, labelled=True)
                if args:
                    args = (args[0].T, args[2], args[1])
                df = DataFrame(*args)
            elif orient == "split":
                decoded = loads(json, dtype=dtype, numpy=True)
                decoded = dict((str(k), v) for k, v in decoded.iteritems())
                df = DataFrame(**decoded)
            elif orient == "values":
                df = DataFrame(loads(json, dtype=dtype, numpy=True))
            else:
                df = DataFrame(*loads(json, dtype=dtype, numpy=True,
                                      labelled=True))
        except ValueError:
            numpy = False
    if not numpy:
        if orient == "columns":
            df = DataFrame(loads(json), dtype=dtype)
        elif orient == "split":
            decoded = dict((str(k), v)
                           for k, v in loads(json).iteritems())
            df = DataFrame(dtype=dtype, **decoded)
        elif orient == "index":
            df = DataFrame(loads(json), dtype=dtype).T
        else:
            df = DataFrame(loads(json), dtype=dtype)

    return df
Beispiel #4
0
def from_json(cls, json, orient="columns", dtype=None, numpy=True):
    """
    Convert JSON string to DataFrame

    Parameters
    ----------
    json : The JSON string to parse.
    orient : {'split', 'records', 'index', 'columns', 'values'},
             default 'columns'
        The format of the JSON string
        split : dict like
            {index -> [index], columns -> [columns], data -> [values]}
        records : list like [{column -> value}, ... , {column -> value}]
        index : dict like {index -> {column -> value}}
        columns : dict like {column -> {index -> value}}
        values : just the values array
    dtype : dtype of the resulting DataFrame
    nupmpy: direct decoding to numpy arrays. default True but falls back
        to standard decoding if a problem occurs.

    Returns
    -------
    result : DataFrame
    """
    df = None

    if dtype is not None and orient == "split":
        numpy = False

    if numpy:
        try:
            if orient == "columns":
                args = loads(json, dtype=dtype, numpy=True, labelled=True)
                if args:
                    args = (args[0].T, args[2], args[1])
                df = DataFrame(*args)
            elif orient == "split":
                decoded = loads(json, dtype=dtype, numpy=True)
                decoded = dict((str(k), v) for k, v in decoded.iteritems())
                df = DataFrame(**decoded)
            elif orient == "values":
                df = DataFrame(loads(json, dtype=dtype, numpy=True))
            else:
                df = DataFrame(
                    *loads(json, dtype=dtype, numpy=True, labelled=True))
        except ValueError:
            numpy = False
    if not numpy:
        if orient == "columns":
            df = DataFrame(loads(json), dtype=dtype)
        elif orient == "split":
            decoded = dict((str(k), v) for k, v in loads(json).iteritems())
            df = DataFrame(dtype=dtype, **decoded)
        elif orient == "index":
            df = DataFrame(loads(json), dtype=dtype).T
        else:
            df = DataFrame(loads(json), dtype=dtype)

    return df
Beispiel #5
0
def from_json(cls, json, orient="index", dtype=None, numpy=True):
    """
    Convert JSON string to Series

    Parameters
    ----------
    json : The JSON string to parse.
    orient : {'split', 'records', 'index'}, default 'index'
        The format of the JSON string
        split : dict like
            {index -> [index], name -> name, data -> [values]}
        records : list like [value, ... , value]
        index : dict like {index -> value}
    dtype : dtype of the resulting Series
    nupmpy: direct decoding to numpy arrays. default True but falls back
        to standard decoding if a problem occurs.

    Returns
    -------
    result : Series
    """
    s = None

    if dtype is not None and orient == "split":
        numpy = False

    if numpy:
        try:
            if orient == "split":
                decoded = loads(json, dtype=dtype, numpy=True)
                decoded = dict((str(k), v) for k, v in decoded.iteritems())
                s = Series(**decoded)
            elif orient == "columns" or orient == "index":
                s = Series(*loads(json, dtype=dtype, numpy=True,
                                  labelled=True))
            else:
                s = Series(loads(json, dtype=dtype, numpy=True))
        except ValueError:
            numpy = False
    if not numpy:
        if orient == "split":
            decoded = dict((str(k), v)
                           for k, v in loads(json).iteritems())
            s = Series(dtype=dtype, **decoded)
        else:
            s = Series(loads(json), dtype=dtype)

    return s
Beispiel #6
0
def from_json(cls, json, orient="index", dtype=None, numpy=True):
    """
    Convert JSON string to Series

    Parameters
    ----------
    json : The JSON string to parse.
    orient : {'split', 'records', 'index'}, default 'index'
        The format of the JSON string
        split : dict like
            {index -> [index], name -> name, data -> [values]}
        records : list like [value, ... , value]
        index : dict like {index -> value}
    dtype : dtype of the resulting Series
    nupmpy: direct decoding to numpy arrays. default True but falls back
        to standard decoding if a problem occurs.

    Returns
    -------
    result : Series
    """
    s = None

    if dtype is not None and orient == "split":
        numpy = False

    if numpy:
        try:
            if orient == "split":
                decoded = loads(json, dtype=dtype, numpy=True)
                decoded = dict((str(k), v) for k, v in decoded.iteritems())
                s = Series(**decoded)
            elif orient == "columns" or orient == "index":
                s = Series(
                    *loads(json, dtype=dtype, numpy=True, labelled=True))
            else:
                s = Series(loads(json, dtype=dtype, numpy=True))
        except ValueError:
            numpy = False
    if not numpy:
        if orient == "split":
            decoded = dict((str(k), v) for k, v in loads(json).iteritems())
            s = Series(dtype=dtype, **decoded)
        else:
            s = Series(loads(json), dtype=dtype)

    return s
Beispiel #7
0
 def on_message(self, message):
     request = json.loads(message)
     handler = self._get_handler(request)
     frame = SOURCES[request['source']]
     resp = handler(request, frame)
     return self._respond(resp, request['handler'])