Beispiel #1
0
    def _on_run(self):
        ''' just loop and write responses '''

        try:
            while True:
                try:
                    try:
                        cmd = self.cmdQueue.get(1, 0.1)
                    except _queue.Empty:
                        if self.killReceived:
                            try:
                                self.sock.shutdown(SHUT_WR)
                                self.sock.close()
                            except:
                                pass

                            return  # break if queue is empty and killReceived
                        else:
                            continue
                except:
                    # pydevd_log(0, 'Finishing debug communication...(1)')
                    # when liberating the thread here, we could have errors because we were shutting down
                    # but the thread was still not liberated
                    return
                cmd.send(self.sock)

                if cmd.id == CMD_EXIT:
                    break
                if time is None:
                    break  # interpreter shutdown
                time.sleep(self.timeout)
        except Exception:
            GlobalDebuggerHolder.global_dbg.finish_debugging_session()
            if DebugInfoHolder.DEBUG_TRACE_LEVEL >= 0:
                traceback.print_exc()
Beispiel #2
0
    def _on_run(self):
        ''' just loop and write responses '''

        try:
            while True:
                try:
                    try:
                        cmd = self.cmdQueue.get(1, 0.1)
                    except _queue.Empty:
                        if self.killReceived:
                            try:
                                self.sock.shutdown(SHUT_WR)
                                self.sock.close()
                            except:
                                pass

                            return  # break if queue is empty and killReceived
                        else:
                            continue
                except:
                    # pydevd_log(0, 'Finishing debug communication...(1)')
                    # when liberating the thread here, we could have errors because we were shutting down
                    # but the thread was still not liberated
                    return
                cmd.send(self.sock)

                if cmd.id == CMD_EXIT:
                    break
                if time is None:
                    break  # interpreter shutdown
                time.sleep(self.timeout)
        except Exception:
            GlobalDebuggerHolder.global_dbg.finish_debugging_session()
            if DebugInfoHolder.DEBUG_TRACE_LEVEL >= 0:
                traceback.print_exc()
def inputhook_wx3():
    """Run the wx event loop by processing pending events only.

    This is like inputhook_wx1, but it keeps processing pending events
    until stdin is ready.  After processing all pending events, a call to
    time.sleep is inserted.  This is needed, otherwise, CPU usage is at 100%.
    This sleep time should be tuned though for best performance.
    """
    # We need to protect against a user pressing Control-C when IPython is
    # idle and this is running. We trap KeyboardInterrupt and pass.
    try:
        app = wx.GetApp()  # @UndefinedVariable
        if app is not None:
            if hasattr(wx, 'IsMainThread'):
                assert wx.IsMainThread()  # @UndefinedVariable
            else:
                assert wx.Thread_IsMain()  # @UndefinedVariable

            # The import of wx on Linux sets the handler for signal.SIGINT
            # to 0.  This is a bug in wx or gtk.  We fix by just setting it
            # back to the Python default.
            if not callable(signal.getsignal(signal.SIGINT)):
                signal.signal(signal.SIGINT, signal.default_int_handler)

            evtloop = wx.EventLoop()  # @UndefinedVariable
            ea = wx.EventLoopActivator(evtloop)  # @UndefinedVariable
            t = clock()
            while not stdin_ready():
                while evtloop.Pending():
                    t = clock()
                    evtloop.Dispatch()
                app.ProcessIdle()
                # We need to sleep at this point to keep the idle CPU load
                # low.  However, if sleep to long, GUI response is poor.  As
                # a compromise, we watch how often GUI events are being processed
                # and switch between a short and long sleep time.  Here are some
                # stats useful in helping to tune this.
                # time    CPU load
                # 0.001   13%
                # 0.005   3%
                # 0.01    1.5%
                # 0.05    0.5%
                used_time = clock() - t
                if used_time > 10.0:
                    # print 'Sleep for 1 s'  # dbg
                    time.sleep(1.0)
                elif used_time > 0.1:
                    # Few GUI events coming in, so we can sleep longer
                    # print 'Sleep for 0.05 s'  # dbg
                    time.sleep(0.05)
                else:
                    # Many GUI events coming in, so sleep only very little
                    time.sleep(0.001)
            del ea
    except KeyboardInterrupt:
        pass
    return 0
Beispiel #4
0
def inputhook_wx3():
    """Run the wx event loop by processing pending events only.

    This is like inputhook_wx1, but it keeps processing pending events
    until stdin is ready.  After processing all pending events, a call to
    time.sleep is inserted.  This is needed, otherwise, CPU usage is at 100%.
    This sleep time should be tuned though for best performance.
    """
    # We need to protect against a user pressing Control-C when IPython is
    # idle and this is running. We trap KeyboardInterrupt and pass.
    try:
        app = wx.GetApp()  # @UndefinedVariable
        if app is not None:
            assert wx.Thread_IsMain()  # @UndefinedVariable

            # The import of wx on Linux sets the handler for signal.SIGINT
            # to 0.  This is a bug in wx or gtk.  We fix by just setting it
            # back to the Python default.
            if not callable(signal.getsignal(signal.SIGINT)):
                signal.signal(signal.SIGINT, signal.default_int_handler)

            evtloop = wx.EventLoop()  # @UndefinedVariable
            ea = wx.EventLoopActivator(evtloop)  # @UndefinedVariable
            t = clock()
            while not stdin_ready():
                while evtloop.Pending():
                    t = clock()
                    evtloop.Dispatch()
                app.ProcessIdle()
                # We need to sleep at this point to keep the idle CPU load
                # low.  However, if sleep to long, GUI response is poor.  As
                # a compromise, we watch how often GUI events are being processed
                # and switch between a short and long sleep time.  Here are some
                # stats useful in helping to tune this.
                # time    CPU load
                # 0.001   13%
                # 0.005   3%
                # 0.01    1.5%
                # 0.05    0.5%
                used_time = clock() - t
                if used_time > 10.0:
                    # print 'Sleep for 1 s'  # dbg
                    time.sleep(1.0)
                elif used_time > 0.1:
                    # Few GUI events coming in, so we can sleep longer
                    # print 'Sleep for 0.05 s'  # dbg
                    time.sleep(0.05)
                else:
                    # Many GUI events coming in, so sleep only very little
                    time.sleep(0.001)
            del ea
    except KeyboardInterrupt:
        pass
    return 0
Beispiel #5
0
def inputhook_glut():
    """Run the pyglet event loop by processing pending events only.

    This keeps processing pending events until stdin is ready.  After
    processing all pending events, a call to time.sleep is inserted.  This is
    needed, otherwise, CPU usage is at 100%.  This sleep time should be tuned
    though for best performance.
    """
    # We need to protect against a user pressing Control-C when IPython is
    # idle and this is running. We trap KeyboardInterrupt and pass.

    signal.signal(signal.SIGINT, glut_int_handler)

    try:
        t = clock()

        # Make sure the default window is set after a window has been closed
        if glut.glutGetWindow() == 0:
            glut.glutSetWindow(1)
            glutMainLoopEvent()
            return 0

        while not stdin_ready():
            glutMainLoopEvent()
            # We need to sleep at this point to keep the idle CPU load
            # low.  However, if sleep to long, GUI response is poor.  As
            # a compromise, we watch how often GUI events are being processed
            # and switch between a short and long sleep time.  Here are some
            # stats useful in helping to tune this.
            # time    CPU load
            # 0.001   13%
            # 0.005   3%
            # 0.01    1.5%
            # 0.05    0.5%
            used_time = clock() - t
            if used_time > 10.0:
                # print 'Sleep for 1 s'  # dbg
                time.sleep(1.0)
            elif used_time > 0.1:
                # Few GUI events coming in, so we can sleep longer
                # print 'Sleep for 0.05 s'  # dbg
                time.sleep(0.05)
            else:
                # Many GUI events coming in, so sleep only very little
                time.sleep(0.001)
    except KeyboardInterrupt:
        pass
    return 0
Beispiel #6
0
def inputhook_glut():
    """Run the pyglet event loop by processing pending events only.

    This keeps processing pending events until stdin is ready.  After
    processing all pending events, a call to time.sleep is inserted.  This is
    needed, otherwise, CPU usage is at 100%.  This sleep time should be tuned
    though for best performance.
    """
    # We need to protect against a user pressing Control-C when IPython is
    # idle and this is running. We trap KeyboardInterrupt and pass.

    signal.signal(signal.SIGINT, glut_int_handler)

    try:
        t = clock()

        # Make sure the default window is set after a window has been closed
        if glut.glutGetWindow() == 0:
            glut.glutSetWindow( 1 )
            glutMainLoopEvent()
            return 0

        while not stdin_ready():
            glutMainLoopEvent()
            # We need to sleep at this point to keep the idle CPU load
            # low.  However, if sleep to long, GUI response is poor.  As
            # a compromise, we watch how often GUI events are being processed
            # and switch between a short and long sleep time.  Here are some
            # stats useful in helping to tune this.
            # time    CPU load
            # 0.001   13%
            # 0.005   3%
            # 0.01    1.5%
            # 0.05    0.5%
            used_time = clock() - t
            if used_time > 10.0:
                # print 'Sleep for 1 s'  # dbg
                time.sleep(1.0)
            elif used_time > 0.1:
                # Few GUI events coming in, so we can sleep longer
                # print 'Sleep for 0.05 s'  # dbg
                time.sleep(0.05)
            else:
                # Many GUI events coming in, so sleep only very little
                time.sleep(0.001)
    except KeyboardInterrupt:
        pass
    return 0
def inputhook_pyglet():
    """Run the pyglet event loop by processing pending events only.

    This keeps processing pending events until stdin is ready.  After
    processing all pending events, a call to time.sleep is inserted.  This is
    needed, otherwise, CPU usage is at 100%.  This sleep time should be tuned
    though for best performance.
    """
    # We need to protect against a user pressing Control-C when IPython is
    # idle and this is running. We trap KeyboardInterrupt and pass.
    try:
        t = clock()
        while not stdin_ready():
            pyglet.clock.tick()
            for window in pyglet.app.windows:
                window.switch_to()
                window.dispatch_events()
                window.dispatch_event('on_draw')
                flip(window)

            # We need to sleep at this point to keep the idle CPU load
            # low.  However, if sleep to long, GUI response is poor.  As
            # a compromise, we watch how often GUI events are being processed
            # and switch between a short and long sleep time.  Here are some
            # stats useful in helping to tune this.
            # time    CPU load
            # 0.001   13%
            # 0.005   3%
            # 0.01    1.5%
            # 0.05    0.5%
            used_time = clock() - t
            if used_time > 10.0:
                # print 'Sleep for 1 s'  # dbg
                time.sleep(1.0)
            elif used_time > 0.1:
                # Few GUI events coming in, so we can sleep longer
                # print 'Sleep for 0.05 s'  # dbg
                time.sleep(0.05)
            else:
                # Many GUI events coming in, so sleep only very little
                time.sleep(0.001)
    except KeyboardInterrupt:
        pass
    return 0
Beispiel #8
0
def inputhook_pyglet():
    """Run the pyglet event loop by processing pending events only.

    This keeps processing pending events until stdin is ready.  After
    processing all pending events, a call to time.sleep is inserted.  This is
    needed, otherwise, CPU usage is at 100%.  This sleep time should be tuned
    though for best performance.
    """
    # We need to protect against a user pressing Control-C when IPython is
    # idle and this is running. We trap KeyboardInterrupt and pass.
    try:
        t = clock()
        while not stdin_ready():
            pyglet.clock.tick()
            for window in pyglet.app.windows:
                window.switch_to()
                window.dispatch_events()
                window.dispatch_event('on_draw')
                flip(window)

            # We need to sleep at this point to keep the idle CPU load
            # low.  However, if sleep to long, GUI response is poor.  As
            # a compromise, we watch how often GUI events are being processed
            # and switch between a short and long sleep time.  Here are some
            # stats useful in helping to tune this.
            # time    CPU load
            # 0.001   13%
            # 0.005   3%
            # 0.01    1.5%
            # 0.05    0.5%
            used_time = clock() - t
            if used_time > 10.0:
                # print 'Sleep for 1 s'  # dbg
                time.sleep(1.0)
            elif used_time > 0.1:
                # Few GUI events coming in, so we can sleep longer
                # print 'Sleep for 0.05 s'  # dbg
                time.sleep(0.05)
            else:
                # Many GUI events coming in, so sleep only very little
                time.sleep(0.001)
    except KeyboardInterrupt:
        pass
    return 0