def test(): from matplotlib import pyplot # make some dat import _test_dat as test_dat chans = num.arange(2048) offset = 1.0 slope = .01 en = offset + slope*chans data = test_dat.data1(en) pyplot.plot(en,data,'ko') # bgr = Background(bottom_width=4.,compress=4) bgr.calc(data,slope=slope) print bgr pyplot.plot(en,bgr.bgr,'r') # pyplot.show()
def test_fit(): from matplotlib import pyplot import _test_dat as test_dat from xrf_bgr import Background ############################# # Data ############################# chans = num.arange(2048) offset = 1.0 slope = .01 en = offset + slope * chans data = test_dat.data1(en) pyplot.subplot(211) pyplot.plot(en, data, 'ko') ############################# # fit ############################# p1 = XrfPeak(label='p1', energy=4.) p2 = XrfPeak(label='p2', energy=7.) bgr = Background(bottom_width=4, compress=4) xspec = XrfSpectrum(data=data, chans=chans, peaks=[p1, p2], bgr=bgr, energy_offset=1., energy_slope=0.01, chi_exp=0.5, guess=True) # lets see how good the initial guess is pyplot.plot(en, xspec.peaks[0].calc(en), 'r') pyplot.plot(en, xspec.peaks[1].calc(en), 'r') # Now do the fit xspec.fit(opt_bgr=False, quiet=0) print xspec pyplot.subplot(212) en = xspec.energy_offset + xspec.energy_slope * chans pyplot.plot(en, data, 'ko') pyplot.plot(en, xspec.predicted, 'g') pyplot.plot(en, xspec.bgr.bgr, 'k-') ############################# pyplot.show()
def test_fit(): from matplotlib import pyplot import _test_dat as test_dat from xrf_bgr import Background ############################# # Data ############################# chans = num.arange(2048) offset = 1.0 slope = .01 en = offset + slope*chans data = test_dat.data1(en) pyplot.subplot(211) pyplot.plot(en,data,'ko') ############################# # fit ############################# p1 = XrfPeak(label='p1',energy=4.) p2 = XrfPeak(label='p2',energy=7.) bgr = Background(bottom_width=4,compress=4) xspec = XrfSpectrum(data=data,chans=chans,peaks=[p1,p2],bgr=bgr, energy_offset=1.,energy_slope=0.01,chi_exp=0.5, guess=True) # lets see how good the initial guess is pyplot.plot(en,xspec.peaks[0].calc(en),'r') pyplot.plot(en,xspec.peaks[1].calc(en),'r') # Now do the fit xspec.fit(opt_bgr=False,quiet=0) print xspec pyplot.subplot(212) en = xspec.energy_offset + xspec.energy_slope*chans pyplot.plot(en,data,'ko') pyplot.plot(en,xspec.predicted,'g') pyplot.plot(en,xspec.bgr.bgr,'k-') ############################# pyplot.show()
def test_peak(): from matplotlib import pyplot # make some dat import _test_dat as test_dat chans = num.arange(2048) offset = 1.0 slope = .01 en = offset + slope*chans data = test_dat.data1(en) pyplot.plot(en,data,'ko') # p1 = XrfPeak(label='1',energy=4.,ampl=550,fwhm=.5) print p1.get_params() p2 = XrfPeak(label='1',energy=7.,ampl=850,fwhm=.6) print p2.get_params() pyplot.plot(en,p1.calc(en),'r') pyplot.plot(en,p2.calc(en),'r') # (y,(mi,ma)) = p1._calc_range(en) print mi,ma pyplot.plot(en[mi:ma],y,'g') # pyplot.show()
def test_peak(): from matplotlib import pyplot # make some dat import _test_dat as test_dat chans = num.arange(2048) offset = 1.0 slope = .01 en = offset + slope * chans data = test_dat.data1(en) pyplot.plot(en, data, 'ko') # p1 = XrfPeak(label='1', energy=4., ampl=550, fwhm=.5) print p1.get_params() p2 = XrfPeak(label='1', energy=7., ampl=850, fwhm=.6) print p2.get_params() pyplot.plot(en, p1.calc(en), 'r') pyplot.plot(en, p2.calc(en), 'r') # (y, (mi, ma)) = p1._calc_range(en) print mi, ma pyplot.plot(en[mi:ma], y, 'g') # pyplot.show()