conf.generator_shared_hidden_units = [1000]
conf.generator_hidden_units = [1000]
conf.generator_activation_function = "elu"
conf.generator_apply_dropout = False
conf.generator_apply_batchnorm = False
conf.generator_apply_batchnorm_to_input = False

conf.decoder_hidden_units = [1000, 1000]
conf.decoder_activation_function = "elu"
conf.decoder_apply_dropout = False
conf.decoder_apply_batchnorm = False
conf.decoder_apply_batchnorm_to_input = False

conf.discriminator_z_hidden_units = [1000, 1000]
conf.discriminator_z_activation_function = "elu"
conf.discriminator_z_apply_dropout = False
conf.discriminator_z_apply_batchnorm = False
conf.discriminator_z_apply_batchnorm_to_input = False

conf.discriminator_y_hidden_units = [1000, 1000]
conf.discriminator_y_activation_function = "elu"
conf.discriminator_y_apply_dropout = False
conf.discriminator_y_apply_batchnorm = False
conf.discriminator_y_apply_batchnorm_to_input = False

conf.q_z_x_type = aae.Q_Z_X_TYPE_GAUSSIAN

aae = AAE(conf, name="aae")
aae.load(args.model_dir)
Beispiel #2
0
    if config.distribution_z == "deterministic":
        generator_z.add(Linear(None, config.ndim_z))
    elif config.distribution_z == "gaussian":
        generator_z.add(Gaussian(None,
                                 config.ndim_z))  # outputs mean and ln(var)
    else:
        raise Exception()

    generator_y = Sequential()
    generator_y.add(Linear(None, config.ndim_y))

    params = {
        "config": config.to_dict(),
        "decoder": decoder.to_dict(),
        "generator_shared": generator_shared.to_dict(),
        "generator_z": generator_z.to_dict(),
        "generator_y": generator_y.to_dict(),
        "discriminator_y": discriminator_y.to_dict(),
        "discriminator_z": discriminator_z.to_dict(),
    }

    with open(model_filename, "w") as f:
        json.dump(params, f, indent=4, sort_keys=True, separators=(',', ': '))

aae = AAE(params)
aae.load(args.model_dir)

if args.gpu_device != -1:
    cuda.get_device(args.gpu_device).use()
    aae.to_gpu()