Beispiel #1
0
    def xseries(self, all_conjugates=True):
        r"""Returns the corresponding x-series.

        Parameters
        ----------
        all_conjugates : bool
            (default: True) If ``True``, returns all conjugates
            x-representations of this Puiseux t-series. If ``False``,
            only returns one representative.

        Returns
        -------
        list
            List of PuiseuxXSeries representations of this PuiseuxTSeries.

        """
        # obtain relevant rings:
        #   o R = parent ring of curve
        #   o L = parent ring of T-series
        #   o S = temporary polynomial ring over base ring of T-series
        #   o P = Puiseux series ring
        L = self.ypart.parent()
        t = L.gen()
        S = L.base_ring()['z']
        z = S.gen()

        R = self.f.parent()
        x,y = R.gens()
        P = PuiseuxSeriesRing(L.base_ring(), str(x))
        x = P.gen()

        # given x = alpha + lambda*t^e solve for t. this involves finding an
        # e-th root of either (1/lambda) or of lambda, depending on e's sign
        ## (A sign on a ramification index ? hm)
        e = self.ramification_index
        abse = abs(e)
        lamb = S(self.xcoefficient)
        order = self.order
        if e > 0:
            phi = lamb*z**e - 1
        else:
            phi = z**abse - lamb
        mu = phi.roots(QQbar, multiplicities=False)[0]

        if all_conjugates:
            zeta_e=QQbar.zeta(abse)
            conjugates = [mu*zeta_e**k for k in range(abse)]
        else:
            conjugates = [mu]
        map(lambda x: x.exactify(), conjugates)

        # determine the resulting x-series
        xseries = []
        for c in conjugates:
            t = self.ypart.parent().gen()
            fconj = self.ypart(c*t)
            p = P(fconj(x**(QQ(1)/e)))
            p = p.add_bigoh(QQ(order+1)/abse)
            xseries.append(p)
        return xseries
Beispiel #2
0
def compute_bd(f, b, df, r, alpha):
    """Determine the next integral basis element form those already computed."""
    # obtain the ring of Puiseux series in which the truncated series
    # live. these should already be such that the base ring is SR, the symbolic
    # ring. (below we will have to introduce symbolic indeterminants)
    R = f.parent()
    F = R.fraction_field()
    x, y = R.gens()

    # construct a list of indeterminants and a guess for the next integral
    # basis element. to make computations uniform in the univariate and
    # multivariate cases an additional generator of the underlying polynomial
    # ring is introduced.
    d = len(b)
    Q = PolynomialRing(QQbar, ['a%d' % n for n in range(d)] + ['dummy'])
    a = tuple(Q.gens())
    b = tuple(b)
    P = PuiseuxSeriesRing(Q, str(x))
    xx = P.gen()
    bd = F(y * b[-1])

    # XXX HACK
    for l in range(len(r)):
        for k in range(len(r[l])):
            r[l][k] = r[l][k].change_ring(Q)

    # sufficiently singularize the current integral basis element guess at each
    # of the singular points of df
    for l in range(len(df)):
        k = df[l]  # factor
        alphak = alpha[l]  # point at which the truncated series are centered
        rk = r[l]  # truncated puiseux series

        # singularize the current guess at the current point using each
        # truncated Puiseux seriesx
        sufficiently_singular = False
        while not sufficiently_singular:
            # from each puiseux series, rki, centered at alphak construct a
            # system of equations from the negative exponent terms appearing in
            # the expression A(x,rki))
            equations = []
            for rki in rk:
                #                A = sum(a[j] * b[j](xx,rki) for j in range(d))
                A = evaluate_A(a, b, xx, rki, d)
                A += bd(xx, rki)

                # implicit division by x-alphak, hence truncation to x^1
                terms = A.truncate(1).coefficients()
                equations.extend(terms)

            # attempt to solve this linear system of equations. if a (unique)
            # solution exists then the integral basis element is not singular
            # enough at alphak
            sols = solve_coefficient_system(Q, equations, a)
            if not sols is None:
                bdm1 = sum(F(sols[i][0]) * b[i] for i in range(d))
                bd = F(bdm1 + bd) / F(k)
            else:
                sufficiently_singular = True
    return bd
Beispiel #3
0
    def test_change_ring(self):
        R = PuiseuxSeriesRing(QQ, 'x')
        x = R.gen()
        half = QQ(1) / 2
        p = x**(-half) + 1 + x + half * x**(5 * half)

        S = PuiseuxSeriesRing(CC, 'x')
        q = p.change_ring(CC)
        self.assertEqual(q.parent(), S)

        T = PuiseuxSeriesRing(SR, 'x')
        r = p.change_ring(SR)
        self.assertEqual(r.parent(), T)

        B = QQ['a,b']
        U = PuiseuxSeriesRing(B, 'x')
        s = p.change_ring(B)
        self.assertEqual(s.parent(), U)
Beispiel #4
0
    def test_change_ring(self):
        R = PuiseuxSeriesRing(QQ, 'x')
        S = R.change_ring(QQbar)
        self.assertEqual(R.base_ring(), QQ)
        self.assertEqual(S.base_ring(), QQbar)

        T = R.change_ring(SR)
        self.assertEqual(T.base_ring(), SR)

        B = QQ['a,b']
        U = R.change_ring(B)
        self.assertEqual(U.base_ring(), B)
Beispiel #5
0
    def test_bigoh(self):
        R = PuiseuxSeriesRing(QQ, 'x')
        x = R.gen()
        half = QQ(1) / QQ(2)

        p = x**(3 * half)
        q = p.add_bigoh(half)
        self.assertEqual(q.prec(), half)
        self.assertEqual(q.laurent_part.prec(), 1)

        p = x**(3 * half)
        q = p.add_bigoh(4)
        self.assertEqual(q.prec(), 4)
        self.assertEqual(q.laurent_part.prec(), 8)
Beispiel #6
0
    def test_sub(self):
        R = PuiseuxSeriesRing(QQ, 't')
        t = R.gen()
        half = QQ(1) / QQ(2)

        p = 1 + t
        q = 1 + t + t**2
        r = t**2
        self.assertEqual(q - p, r)

        p = 1 + t**half
        q = 1 + t**half + t
        r = t
        self.assertEqual(q - p, r)
Beispiel #7
0
    def test_mul(self):
        R = PuiseuxSeriesRing(QQ, 't')
        t = R.gen()
        half = QQ(1) / QQ(2)

        p = t**half
        q = t**half
        r = t
        self.assertEqual(p * q, r)

        p = 1 + t
        q = 1 + t + t**2
        r = 1 + 2 * t + 2 * t**2 + t**3
        self.assertEqual(p * q, r)

        p = 1 + t**half
        q = 1 + t**half + t
        r = 1 + 2 * t**half + 2 * t + t**(half + 1)
        self.assertEqual(p * q, r)
Beispiel #8
0
    def test_repr(self):
        R = PuiseuxSeriesRing(QQ, 't')
        t = R.gen()

        p = R(1)
        s = '1'
        self.assertEqual(str(p), s)

        p = t
        s = 't'
        self.assertEqual(str(p), s)

        p = t**2
        s = 't^2'
        self.assertEqual(str(p), s)

        half = QQ(1) / QQ(2)
        p = t**half
        s = 't^(1/2)'
        self.assertEqual(str(p), s)

        p = t**(-half)
        s = 't^(-1/2)'
        self.assertEqual(str(p), s)
Beispiel #9
0
    def test_laurent_ramification(self):
        R = PuiseuxSeriesRing(QQ, 'x')
        x = R.gen()
        y = R.laurent_series_ring().gen()

        p = x
        self.assertEqual(p.laurent_part, y)
        self.assertEqual(p.ramification_index, 1)

        p = x**2
        self.assertEqual(p.laurent_part, y**2)
        self.assertEqual(p.ramification_index, 1)

        p = x**(QQ(1) / 2)
        self.assertEqual(p.laurent_part, y)
        self.assertEqual(p.ramification_index, 2)

        p = x**(QQ(2) / 3)
        self.assertEqual(p.laurent_part, y**2)
        self.assertEqual(p.ramification_index, 3)

        p = 1 + 42 * x**(QQ(1) / 2) + 99 * x**(QQ(1) / 3)
        self.assertEqual(p.laurent_part, 1 + 99 * y**2 + 42 * y**3)
        self.assertEqual(p.ramification_index, 6)
Beispiel #10
0
    def test_add(self):
        R = PuiseuxSeriesRing(QQ, 't')
        t = R.gen()
        half = QQ(1) / QQ(2)

        p = 1
        q = t
        r = 1 + t
        self.assertEqual(p + q, r)

        p = 1
        q = t**half
        r = 1 + t**half
        self.assertEqual(p + q, r)

        p = 1 + t
        q = 1 + t + t**2
        r = 2 + 2 * t + t**2
        self.assertEqual(p + q, r)

        p = 1 + t**(QQ(1) / 2)
        q = 1 + t**(QQ(1) / 2) + t
        r = 2 + 2 * t**(QQ(1) / 2) + t
        self.assertEqual(p + q, r)
Beispiel #11
0
 def test_construction_QQbar(self):
     R = PuiseuxSeriesRing(QQbar, 'x')
     x = R.gen()
Beispiel #12
0
 def test_construction_SR(self):
     R = PuiseuxSeriesRing(SR, 'x')
     x = R.gen()