Beispiel #1
0
# from abr_control.arms import ur5 as arm
from abr_control.arms import jaco2 as arm

# from abr_control.arms import onejoint as arm
from abr_control.controllers import Sliding
from abr_control.interfaces import CoppeliaSim

# initialize our robot config
robot_config = arm.Config()

# instantiate controller
# NOTE: These values are non-optimal
ctrlr = Sliding(robot_config, kd=10.0, lamb=30.00)

# create our CoppeliaSim interface
interface = CoppeliaSim(robot_config, dt=0.001)
interface.connect()

# set up lists for tracking data
ee_track = []
target_track = []

try:
    # get the end-effector's initial position
    feedback = interface.get_feedback()
    start = robot_config.Tx("EE", feedback["q"])

    # make the target offset from that start position
    target_xyz = start + np.array([0.2, -0.2, 0.0])
    interface.set_xyz(name="target", xyz=target_xyz)
avoid = AvoidObstacles(robot_config)
# damp the movements of the arm
damping = Damping(robot_config, kv=10)
# instantiate the REACH controller with obstacle avoidance
ctrlr = OSC(
    robot_config,
    kp=200,
    null_controllers=[avoid, damping],
    vmax=[0.5, 0],  # [m/s, rad/s]
    # control (x, y, z) out of [x, y, z, alpha, beta, gamma]
    ctrlr_dof=[True, True, True, False, False, False],
)

# create our CoppeliaSim interface
interface = CoppeliaSim(robot_config, dt=0.005)
interface.connect()

# set up lists for tracking data
ee_track = []
target_track = []
obstacle_track = []

moving_obstacle = True
obstacle_xyz = np.array([0.09596, -0.2661, 0.64204])

try:
    # get visual position of end point of object
    feedback = interface.get_feedback()
    start = robot_config.Tx("EE", q=feedback["q"])
Beispiel #3
0
"""
import traceback
import numpy as np

from abr_control.arms import jaco2 as arm
from abr_control.controllers import Floating
from abr_control.interfaces import CoppeliaSim

# initialize our robot config
robot_config = arm.Config()

# instantiate the controller
ctrlr = Floating(robot_config, dynamic=False, task_space=False)

# create the CoppeliaSim interface and connect up
interface = CoppeliaSim(robot_config, dt=0.005)
interface.connect()

# set up arrays for tracking end-effector and target position
ee_track = []
q_track = []

try:
    # get the end-effector's initial position
    feedback = interface.get_feedback()
    start = robot_config.Tx("EE", q=feedback["q"])

    print("\nSimulation starting...\n")

    while 1:
        # get joint angle and velocity feedback
Beispiel #4
0
# from abr_control.arms import ur5 as arm
from abr_control.arms import jaco2 as arm

# from abr_control.arms import onejoint as arm
from abr_control.controllers import Joint
from abr_control.interfaces import CoppeliaSim


# initialize our robot config
robot_config = arm.Config()

# instantiate the REACH controller for the jaco2 robot
ctrlr = Joint(robot_config, kp=50)

# create interface and connect
interface = CoppeliaSim(robot_config=robot_config, dt=0.005)
interface.connect()

# make the target an offset of the current configuration
feedback = interface.get_feedback()
target = feedback["q"] + np.ones(robot_config.N_JOINTS) * 0.3

# For CoppeliaSim files that have a shadow arm to show the target configuration
# get joint handles for shadow
names = ["joint%i_shadow" % ii for ii in range(robot_config.N_JOINTS)]
joint_handles = []
for name in names:
    interface.get_xyz(name)  # this loads in the joint handle
    joint_handles.append(interface.misc_handles[name])
# move shadow to target position
interface.send_target_angles(target, joint_handles)
    ctrlr_dof=[True, True, True, False, False, False],
)

# create our adaptive controller
adapt = signals.DynamicsAdaptation(
    n_neurons=1000,
    n_ensembles=5,
    n_input=2,  # we apply adaptation on the most heavily stressed joints
    n_output=2,
    pes_learning_rate=5e-5,
    means=[3.14, 3.14],
    variances=[1.57, 1.57],
)

# create our CoppeliaSim interface
interface = CoppeliaSim(robot_config, dt=0.005)
interface.connect()
interface.send_target_angles(q=robot_config.START_ANGLES)

# set up lists for tracking data
ee_track = []
target_track = []

# get Jacobians to each link for calculating perturbation
J_links = [
    robot_config._calc_J("link%s" % ii, x=[0, 0, 0])
    for ii in range(robot_config.N_LINKS)
]

try:
    # get the end-effector's initial position
Beispiel #6
0
# damp the movements of the arm
damping = Damping(robot_config, kv=10)
# create opreational space controller
ctrlr_dof = np.array([True, False, False, True, True, True])
ctrlr = OSC(
    robot_config,
    kp=200,
    null_controllers=[damping],
    vmax=[10, 10],  # [m/s, rad/s]
    # control (x, alpha, beta, gamma) out of [x, y, z, alpha, beta, gamma]
    ctrlr_dof=ctrlr_dof,
)

# create our interface
interface = CoppeliaSim(robot_config, dt=0.005)
interface.connect()

# set up lists for tracking data
ee_track = []
ee_angles_track = []
target_track = []
target_angles_track = []


try:
    count = 0
    print("\nSimulation starting...\n")
    while 1:
        # get arm feedback
        feedback = interface.get_feedback()
Beispiel #7
0
robot_config = arm.Config()

# damp the movements of the arm
damping = Damping(robot_config, kv=10)
# instantiate controller
ctrlr = OSC(
    robot_config,
    kp=200,
    null_controllers=[damping],
    vmax=[0.5, 0],  # [m/s, rad/s]
    # control (x, y, z) out of [x, y, z, alpha, beta, gamma]
    ctrlr_dof=[True, True, True, False, False, False],
)

# create our CoppeliaSim interface
interface = CoppeliaSim(robot_config, dt=0.005)
interface.connect()

# set up lists for tracking data
ee_track = []
target_track = []

try:
    # get the end-effector's initial position
    feedback = interface.get_feedback()
    start = robot_config.Tx("EE", feedback["q"])

    # make the target offset from that start position
    target_xyz = start + np.array([0.2, -0.2, -0.3])
    interface.set_xyz(name="target", xyz=target_xyz)
Beispiel #8
0
# damp the movements of the arm
damping = Damping(robot_config, kv=10)
# create opreational space controller
ctrlr = OSC(
    robot_config,
    kp=100,  # position gain
    ko=250,  # orientation gain
    null_controllers=[damping],
    vmax=None,  # [m/s, rad/s]
    # control all DOF [x, y, z, alpha, beta, gamma]
    ctrlr_dof=[True, True, True, True, True, True],
)

# create our interface
interface = CoppeliaSim(robot_config, dt=0.005)
interface.connect()

# pregenerate our path and orientation planners
n_timesteps = 100
traj_planner = path_planners.SecondOrderDMP(error_scale=50,
                                            n_timesteps=n_timesteps)
orientation_planner = path_planners.Orientation()

feedback = interface.get_feedback()
hand_xyz = robot_config.Tx("EE", feedback["q"])
starting_orientation = robot_config.quaternion("EE", feedback["q"])

target_orientation = np.random.random(3)
target_orientation /= np.linalg.norm(target_orientation)
# convert our orientation to a quaternion