Beispiel #1
0
Datei: c5.py Projekt: 3774257/abu
def sample_531_2():
    """
    5.3.1_2 绘制股票的收益,及收益波动情况
    :return:
    """
    tsla_df_copy = tsla_df.copy()
    # 投资回报
    tsla_df_copy['return'] = np.log(tsla_df['close'] / tsla_df['close'].shift(1))

    # 移动收益标准差
    tsla_df_copy['mov_std'] = pd_rolling_std(tsla_df_copy['return'],
                                             window=20,
                                             center=False) * np.sqrt(20)
    # 加权移动收益标准差,与移动收益标准差基本相同,只不过根据时间权重计算std
    tsla_df_copy['std_ewm'] = pd_ewm_std(tsla_df_copy['return'], span=20,
                                         min_periods=20,
                                         adjust=True) * np.sqrt(20)

    tsla_df_copy[['close', 'mov_std', 'std_ewm', 'return']].plot(subplots=True, grid=True)
    plt.show()
Beispiel #2
0
def sample_531_2():
    """
    5.3.1_2 绘制股票的收益,及收益波动情况
    :return:
    """
    tsla_df_copy = tsla_df.copy()
    # 投资回报
    tsla_df_copy['return'] = np.log(tsla_df['close'] / tsla_df['close'].shift(1))

    # 移动收益标准差
    tsla_df_copy['mov_std'] = pd_rolling_std(tsla_df_copy['return'],
                                             window=20,
                                             center=False) * np.sqrt(20)
    # 加权移动收益标准差,与移动收益标准差基本相同,只不过根据时间权重计算std
    tsla_df_copy['std_ewm'] = pd_ewm_std(tsla_df_copy['return'], span=20,
                                         min_periods=20,
                                         adjust=True) * np.sqrt(20)

    tsla_df_copy[['close', 'mov_std', 'std_ewm', 'return']].plot(subplots=True, grid=True)
    plt.show()