# PowerSpectra can be used instead #=============================================================================== f = PowerSpectra( time_data=t1, window='Hanning', overlap='50%', block_size=128, #FFT-parameters ind_low=8, ind_high=16) #to save computational effort, only # frequencies with index 1-30 are used #=============================================================================== # the environment, i.e. medium characteristics # (in this case, the speed of sound is set) #=============================================================================== env = Environment(c=346.04) # ============================================================================= # a steering vector instance. SteeringVector provides the standard freefield # sound propagation model in the steering vectors. # ============================================================================= st = SteeringVector(grid=g, mics=m, env=env) #=============================================================================== # beamformers in frequency domain #=============================================================================== bb = BeamformerBase(freq_data=f, steer=st, r_diag=True) bd = BeamformerDamas(beamformer=bb, n_iter=100) be = BeamformerEig(freq_data=f, steer=st, r_diag=True, n=54) bo = BeamformerOrth(beamformer=be, eva_list=list(range(38, 54))) bs = BeamformerCleansc(freq_data=f, steer=st, r_diag=True)
x_max=0.2, y_min=-0.2, y_max=0.2, z_min=0.5, z_max=0.9, increment=0.2) gc = g.gpos flows = [ SlotJet(v0=70.0, origin=(-0.7, 0, 0.7)), OpenJet(v0=70.0, origin=(-0.7, 0, 0.7)), RotatingFlow(v0=70.0, rpm=1000.0) ] envs = [ Environment(), UniformFlowEnvironment(ma=0.3), GeneralFlowEnvironment(ff=OpenJet(v0=70.0, origin=(-0.7, 0, 0.7))) ] class acoular_env_test(unittest.TestCase): def test_flow_results(self): for fl in flows: with self.subTest(fl.__class__.__name__): name = join('reference_data', f'{fl.__class__.__name__}.npy') # stack all results actual_data = np.array([np.vstack(fl.v(x)) for x in gc.T]) if WRITE_NEW_REFERENCE_DATA: np.save(name, actual_data) ref_data = np.load(name)