Beispiel #1
0
class BackscatterEnv3(gym.Env):
    TIME_FRAME = 10
    BUSY_TIMESLOT = 4
    DATA_RATE = 0.3

    def __init__(self):

        # System parameters
        self.nb_ST = 3
        self.state_size = 2 * self.nb_ST
        self.nb_actions = (BackscatterEnv3.BUSY_TIMESLOT + 1)**3 * (
            BackscatterEnv3.TIME_FRAME - BackscatterEnv3.BUSY_TIMESLOT + 1)**2

        self.action_space = ActionSpace(
            (Discrete(BackscatterEnv3.BUSY_TIMESLOT + 1),
             Discrete(BackscatterEnv3.BUSY_TIMESLOT + 1),
             Discrete(BackscatterEnv3.BUSY_TIMESLOT + 1),
             Discrete(BackscatterEnv3.TIME_FRAME -
                      BackscatterEnv3.BUSY_TIMESLOT + 1),
             Discrete(BackscatterEnv3.TIME_FRAME -
                      BackscatterEnv3.BUSY_TIMESLOT + 1)))

        self.observation_space = StateSpace(
            (Discrete(SecondTransmitor.QUEUE), Discrete(
                SecondTransmitor.ENERGY), Discrete(SecondTransmitor.QUEUE),
             Discrete(SecondTransmitor.ENERGY),
             Discrete(SecondTransmitor.QUEUE),
             Discrete(SecondTransmitor.ENERGY)))

        # initialize Second Transmitters
        self.ST1 = SecondTransmitor(data_rate=BackscatterEnv3.DATA_RATE)
        self.ST2 = SecondTransmitor(data_rate=BackscatterEnv3.DATA_RATE)
        self.ST3 = SecondTransmitor(data_rate=BackscatterEnv3.DATA_RATE)

        self.viewer = None
        self.state = None
        self.steps_beyond_done = None

    def seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]

    def step(self, action):
        assert self.action_space.contains(
            action), "%r (%s) invalid" % (action, type(action))
        harvest = action[0]
        backscatter_time_1 = action[1]
        backscatter_time_2 = action[2]
        transmit_time_1 = action[3]
        transmit_time_2 = action[4]
        backscatter_time_3 = BackscatterEnv3.BUSY_TIMESLOT - harvest - backscatter_time_1 - backscatter_time_2
        transmit_time_3 = BackscatterEnv3.TIME_FRAME - BackscatterEnv3.BUSY_TIMESLOT - transmit_time_1 - transmit_time_2
        reward = 0
        if ((backscatter_time_3 >= 0) and (transmit_time_3 >= 0)):
            harvest_time_1 = BackscatterEnv3.BUSY_TIMESLOT - backscatter_time_1
            harvest_time_2 = BackscatterEnv3.BUSY_TIMESLOT - backscatter_time_2
            harvest_time_3 = BackscatterEnv3.BUSY_TIMESLOT - backscatter_time_3

            reward += self.ST1.update(harvest_time_1, backscatter_time_1,
                                      transmit_time_1)
            reward += self.ST2.update(harvest_time_2, backscatter_time_2,
                                      transmit_time_2)
            reward += self.ST3.update(harvest_time_3, backscatter_time_3,
                                      transmit_time_3)

            throughtput = reward

            datawaiting_before = self.ST1.queue

            self.ST1.generateData()
            self.ST2.generateData()
            self.ST3.generateData()
            datawaiting = self.ST1.queue

            state = [
                self.ST1.queue, self.ST1.energy, self.ST2.queue,
                self.ST2.energy, self.ST3.queue, self.ST3.energy
            ]
            self.state = tuple(state)

        else:  # in case, assignment is not suitable
            reward = -10
            throughtput = 0
            datawaiting_before = self.ST1.queue
            if (self.ST1.queue == SecondTransmitor.QUEUE
                    and self.ST2.queue == SecondTransmitor.QUEUE
                    and self.ST3.queue == SecondTransmitor.QUEUE):
                self.ST1.reset()
                self.ST2.reset()
                self.ST3.reset()
            else:
                self.ST1.generateData()
                self.ST2.generateData()
                self.ST3.generateData()
            datawaiting = self.ST1.queue
            state = [
                self.ST1.queue, self.ST1.energy, self.ST2.queue,
                self.ST2.energy, self.ST3.queue, self.ST3.energy
            ]
            self.state = tuple(state)
            print(np.array(self.state), reward, datawaiting, action)

        done = False
        # print(np.array(self.state), reward, done, {})
        return np.array(self.state), [
            reward, throughtput, datawaiting_before, datawaiting
        ], done, {}

    def reset(self):
        self.state = []
        self.ST1.reset()
        self.ST2.reset()
        self.ST3.reset()
        state = [
            self.ST1.queue, self.ST1.energy, self.ST2.queue, self.ST2.energy,
            self.ST3.queue, self.ST3.energy
        ]
        self.state = tuple(state)
        print(self.state)
        self.steps_beyond_done = None
        return np.array(self.state)

    def updateObservation(self):
        return

    def render(self, mode='human', close=False):
        return

    def close(self):
        """Override in your subclass to perform any necessary cleanup.
        Environments will automatically close() themselves when
        garbage collected or when the program exits.
        """
        raise NotImplementedError()

    def seed(self, seed=None):
        """Sets the seed for this env's random number generator(s).

        # Returns
            Returns the list of seeds used in this env's random number generators
        """
        raise NotImplementedError()

    def configure(self, *args, **kwargs):
        """Provides runtime configuration to the environment.
        This configuration should consist of data that tells your
        environment how to run (such as an address of a remote server,
        or path to your ImageNet data). It should not affect the
        semantics of the environment.
        """
        raise NotImplementedError()


# env = BackscatterEnv3()
# env.reset()
# for index in range(0, 1000):
#     env.step(env.action_space.sample())
Beispiel #2
0
class BlockchainEnv(gym.Env):

    def __init__(self):
        self.action_space = ActionSpace(3)
        self.observation_space = spaces.Tuple((Discrete(100), Discrete(100), Discrete(100)))

        # self.seed()
        self.viewer = None
        self.state = None

        self.market_value = 100
        self.alpha = -0.05
        self.ob = 0.1
        self.os = 0.15

        self.steps_beyond_done = None

    def seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]

    def step(self, action):
        assert self.action_space.contains(action), "%r (%s) invalid"%(action, type(action))
        state = self.state
        state_list = list(state)

        action = min(action,state_list[0])

        actions = np.array([action, self.action_space.sample(), self.action_space.sample()])
        for index in range(len(state)):
            win_prob = state[index]*1.0/sum(state)
            if(win_prob > np.random.rand(1)):
                state_list[index] = state_list[index] - actions[index] + 1
            else:
                state_list[index] = state_list[index] - actions[index]

        state = tuple(state_list)
        self.state = state
        self.market_value += sum(actions) * self.alpha
        if (action > 0):    #selling
            reward = action * self.market_value - self.ob
        elif (action < 0):
            reward = action * self.market_value - self.os
        else:
            reward = 0
        done = sum(state)==0
        done = bool(done)

        return np.array(self.state), reward, done, {}

    def reset(self):
        self.state = self.observation_space.sample()
        print(self.state)
        self.steps_beyond_done = None
        self.market_value = 100
        return np.array(self.state)



    def render(self, mode='human', close=False):
       return

    def close(self):
        """Override in your subclass to perform any necessary cleanup.
        Environments will automatically close() themselves when
        garbage collected or when the program exits.
        """
        raise NotImplementedError()

    def seed(self, seed=None):
        """Sets the seed for this env's random number generator(s).

        # Returns
            Returns the list of seeds used in this env's random number generators
        """
        raise NotImplementedError()

    def configure(self, *args, **kwargs):
        """Provides runtime configuration to the environment.
        This configuration should consist of data that tells your
        environment how to run (such as an address of a remote server,
        or path to your ImageNet data). It should not affect the
        semantics of the environment.
        """
        raise NotImplementedError()
Beispiel #3
0
class BCnetenv(gym.Env):
    '''
Actions:
    Type: MultiDiscrete form.
    1) Block_Size(shard)   :   Discrete 4  - 2MB[0], 4MB[1], 6MB[2], 8MB[3],   - params: min: 2, max: 8  (megabytes)
    2) Time Interval       :   Discrete 4  - 2[0]  ,   4[1],   6[2],   8[3]    - params: min: 2, max: 8  (seconds)
    3) number of shard (K) :   Discrete 4  - 1[0],     2[1],   4[2],   8[3]    - params: min: 1, max: 8
    MultiDiscrete([ 4, 4, 4 ])  -> we use discrete expression (64)
    0, 0 ,0 ->0
    0, 0, 1 ->1
    0, 0, 2 ->2
    ...
    3, 3, 3 -> 63

state space:
    Type:
    Num       state                    Min       Max     format
    0    data transmission link      10MHZ    100MHZ      nxn
    1     computing capability       10GHZ     30GHZ      nx1
    2      consensus history           0         1        nxn
    3 estimated faulty probability     0        1/3       nx1

:
    Type: Box(2)
    num     observation        min       max
    0        latency           0         48
    1   required shard limit   1          8

    '''

    def __init__(self):
        # Simulation parameters
        self.nb_nodes = 200
        self.tx_size = 200 #bytes
        self.B_max = 8 #Megabytes
        self.Ti_amx = 8 #seconds
        self.K_max = 8 # maximum shard number
        self.sign = 2 # MHZ
        self.MAC = 1 # MHZ
        self.batchsize =  3
        self.u = 6  # consecutive block confirm
        self.trans_prob = 0.1 # Transition Probability in Finitie Markov Chain
                                                   
        # define action space & observation_space
        self.action_space = ActionSpace(64)
        self.observation_space = spaces.Box(low=np.array([0, 1]), high=np.array([48, 8]), dtype=np.float32)

        self.seed()
        self.viewer = None
        self.state = None
        self.steps_beyond_done = None

        # state 불러오기. ShardDist함수의 return값을 각각 R,c,H,e_prob로 할당하도록함.
        # 여기서 state는 main의 진짜 state에 필요한 구성요소들을 각각 업데이트하는것임.
        self.R_transmission = None
        self.c_computing = None
        self.H_history = None
        self.e_prob = None




    def seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]






    def step(self, action):
        # step 함수 진행하면서 state space 를 update

        assert self.action_space.contains(action), "%r (%s) invalid"%(action, type(action))
        state = self.state
        R, C, H, e_prob = state
        
        # state라는 지역변수에 self.state 입력. (추후 self.state = 를 다시 입력해 state를 업뎃해야함
        # state는 R,C,H,e_prob 로 구성
        # action 진행시 현재 state를 받아오고, 해당 action을 import한 뒤 다음 state를 출력할 수 있어야함.


## 선택된 action에 대한 local variable 반환
        a=action//16        # action을 16으로 나눈 몫
        b=(action%16)//4    # action을 16으로 나눈 나머지를 다시 4로나눈 몫
        c=action%4          # action을 4로 나눈 나머지

        b_size = 2*(a+1)    # block size 2,4,6,8
        t_interval = 2*(b+1)  # time interval 2,4,6,8
        n_shard = 2**c         # number of shard 1,2,4,8


        # R 업데이트 finite markov channel 기반.
        for i in range (0,self.nb_nodes):
            for j in range (i+1,self.nb_nodes):
                random_number = random.random()
                if (R[i,j] == 10*(10**6)):
                    if (random_number < self.trans_prob):
                        R[i,j] += 10*(10**6)
                        R[j,i] = R[i,j]
                elif (R[i,j] == 100*(10**6)):
                    if (random_number < self.trans_prob):
                        R[i,j] -= 10*(10**6)
                        R[j,i] = R[i,j]        
                else :
                    if (random_number < self.trans_prob):
                        R[i,j] += 10*(10**6)
                        R[j,i] = R[i,j]
                    elif (self.trans_prob <= random_number < 2*self.trans_prob):
                        R[i,j] -= 10*(10**6)
                        R[j,i] = R[i,j]                
        
        # C 업데이트 finite markov channel 기반.
        for i in range (0,self.nb_nodes):
            random_number = random.random()
            if (C[i] == 10*(10**9)):
                if (random_number < self.trans_prob):
                    C[i] += 5*(10**9)
            elif (C[i] == 30*(10**9)):
                if (random_number < self.trans_prob):
                    C[i] -= 5*(10**9)        
            else :
                if (random_number < self.trans_prob):
                    C[i] += 5*(10**9)
                elif (self.trans_prob <= random_number < 2*self.trans_prob):
                    C[i] -= 5*(10**9)
                    
        # H, e_prob 계산. (ShardDist)
        env2 = ShardDistribute()
        H,e_prob,NodesInShard = env2.ShardDist(n_shard)


        self.state = [R, C, H, e_prob]  ## 여기서 e_prob를 받았는데 nx1형식임.
        # 뒤에 constraint에 넣기위해 float32로 바꿔줌
        e_p = e_prob[0,0]  # constraint에 쓸 변수를 여기서 미리 불러옴

### latency computation
        # latency 계산시 R,c로부터 max/min값을 추출하여 latency 세부요소들 전부 계산
        # M,theta,C_numb,alpha,B,timeout 값 설
        M = 3
        theta = 2*(10**6)
        C_numb = len(NodesInShard[n_shard])
        alpha = 10**6
        B = b_size
        timeout = 1000000000000000000000000 # no timeout

        # 1) Intra 샤드에서 validation time 계산
        T_k_in_val = []
        primary = []
        for K in range(n_shard):
            primary.append(NodesInShard[K][random.randint(0,len(NodesInShard[K])-1)])
            
            T_in_val = []
            for i in NodesInShard[K]:
                if (i == primary[K]):
                    T_in_val.append((M*theta + (M*(1+C_numb) + 4*(len(NodesInShard[K])-1))*alpha) / C[i][0])
                else :
                    T_in_val.append((M*theta + (C_numb*M + 4*(len(NodesInShard[K])-1))*alpha) / C[i][0])
            T_k_in_val.append(max(T_in_val))
        T_k_in_val = (1/M)*max(T_k_in_val)
        # 2) Intra 샤드에서 propagation time 계산
        T_k_in_prop = []
        for K in range(n_shard):
            
            T_in_preprepare = []
            T_in_prepare = []
            T_in_commit = []
            
            for i in NodesInShard[K]:
                for j in NodesInShard[K]:
                    if (j != i):
                        if (i == primary[K]):
                            T_in_preprepare.append((M*B)/R[i,j])
                        else :
                            T_in_prepare.append((M*B)/R[i,j])
                        T_in_commit.append((M*B)/R[i,j])
                                           
            T_k_in_prop.append( min(max(T_in_preprepare),timeout) + min(max(T_in_prepare),timeout) + min(max(T_in_commit),timeout) )
        T_k_in_prop = (1/M)*max(T_k_in_prop)        

        # 3) DC (Final shard)에서 validation time 계산                
        primary_DC = NodesInShard[n_shard][random.randint(0,len(NodesInShard[n_shard])-1)] 
           
        T_k_f_val = []
        for i in NodesInShard[n_shard]:
            if (i == primary_DC):
                T_k_f_val.append((n_shard*M*theta + (n_shard*M + 4*(C_numb-1) + (self.nb_nodes-C_numb)*M)*alpha) / C[i][0])
            else :
                T_k_f_val.append((n_shard*M*theta + (4*(C_numb-1) + (self.nb_nodes-C_numb)*M)*alpha) / C[i][0])
        T_k_f_val = (1/M)*max(T_k_f_val)        
                
        # 4) DC (Final shard)에서 propagation time 계산   
        T_k_f_request = []
        T_k_f_preprepare = []
        T_k_f_prepare = []
        T_k_f_commit = []
        T_k_f_reply = []
        
        for i in primary:
            for j in NodesInShard[n_shard]:
                T_k_f_request.append((M*B)/R[i,j])
        
        for i in NodesInShard[n_shard]:
            for j in NodesInShard[n_shard]:
                if (j != i):
                    if (i == primary_DC):
                        T_k_f_preprepare.append((M*B)/R[i,j])
                    else:
                        T_k_f_prepare.append((M*B)/R[i,j])
                    T_k_f_commit.append((M*B)/R[i,j])
        
        for i in NodesInShard[n_shard]:
            for j in primary:
                T_k_f_reply.append((M*B)/R[i,j])
        
        T_k_f_prop = (1/M)*(min(max(T_k_f_request),timeout) + min(max(T_k_f_preprepare),timeout) 
                              + min(max(T_k_f_prepare),timeout) + min(max(T_k_f_commit),timeout) + min(max(T_k_f_request),timeout))
        # 최종 latency의 값은 block interval + 위 4가지 time
        Tlatency = t_interval + (T_k_in_val + T_k_in_prop + T_k_f_val + T_k_f_prop)


### constraint (latency & shard)
        done = Tlatency > self.u * t_interval \
               or n_shard >= (self.nb_nodes*(1-(3*e_p))-1)/(3*self.nb_nodes*e_p + 1)
        done = bool(done)

        #done 이 1인경우, 즉 끝났다면(조건을 위반하여) reward는 0
        #done이 0인 경우, reward는 TPS를 반영한다.

        if not done:
            reward = (n_shard * (math.floor((b_size/self.tx_size)*1024*1024)))/t_interval
        elif self.steps_beyond_done is None:   ## step beyond done?
            self.steps_beyond_done = 0
            reward = 1.0
        else:
            if self.steps_beyond_done == 0:
                logger.warn("You are calling 'step()' even though this environment has already returned done = True. "
                            "You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.")
            self.steps_beyond_done += 1
            reward = 0.0
##### state change 적용해서 R,C,H,e_prop 업데이트.
### 리턴되어야 하는 값은, action이 들어왔을때, 변경된 R,C,H,e-Prob

        return self.state, reward, done, {}   ## 카트폴에서는 self.state에 np.array가 있는데, 여기서는 풀어줘야함
    # 왜냐하면, R,C,H,e_prob는 모두 차원이 달라 np.array를 쓰면 차원오류가 뜸.
    # 144번라인에서 self.state = [R, C, H, e_prob] 에 의해, 각 원소들이 state로 들어감.
    # state[0], state[1], state[2], state[3]을 통해 각각 R,C,H,e_prob를 반환할 수 있다.



    def reset(self):
        # state space - > R,c,H reset.
        R_transmission = np.zeros((self.nb_nodes,self.nb_nodes))
        c_computing = np.zeros((self.nb_nodes,1))
        
        for i in range (0,self.nb_nodes):
            for j in range (i+1,self.nb_nodes):
                R_transmission[i,j] = random.randrange(10,101,10)
                R_transmission[j,i] = R_transmission[i,j]
        R_transmission = (10**6)*R_transmission

        for i in range (0,self.nb_nodes):
            c_computing[i] = random.randrange(10,31,5)
        c_computing = (10**9)*c_computing
 
        
        n_shard = 2**(random.randrange(1,5)-1)

        env2 = ShardDistribute()
        H,e_prob,NodesInShard = env2.ShardDist(n_shard)
        
        self.state = [R_transmission, c_computing, H, e_prob]
        
        return self.state
class FederatedLearningEnv(gym.Env):
    TIME_LIMIT = 10000
    DATA_LIMIT = 1500
    def __init__(self):

        # System parameters
        self.nb_MB = 3
        self.state_size = 2 * self.nb_MB
        self.nb_actions = (Mobile.MAX_DATA + 1) ** self.nb_MB * (Mobile.MAX_ENERGY + 1) ** self.nb_MB

        self.action_space = ActionSpace((Discrete(Mobile.MAX_DATA + 1), Discrete(Mobile.MAX_ENERGY + 1),
                                         Discrete(Mobile.MAX_DATA + 1), Discrete(Mobile.MAX_ENERGY + 1),
                                         Discrete(Mobile.MAX_DATA + 1), Discrete(Mobile.MAX_ENERGY + 1)
                                         ))

        self.observation_space = StateSpace((Discrete(Mobile.MAX_CPU), Discrete(Mobile.MAX_ENERGY),
                                             Discrete(Mobile.MAX_CPU), Discrete(Mobile.MAX_ENERGY),
                                             Discrete(Mobile.MAX_CPU), Discrete(Mobile.MAX_ENERGY)))

        # initialize Second Transmitters
        self.MB1 = Mobile()
        self.MB2 = Mobile()
        self.MB3 = Mobile()

        self.max_data = self.nb_MB * Mobile.MAX_DATA
        self.max_energy = self.nb_MB * Mobile.MAX_ENERGY
        self.max_latency = Mobile.MAX_LATENCY

        self.training_time = 0
        self.training_data = 0

        self.viewer = None
        self.state = None
        self.steps_beyond_done = None

    def seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]

    def step(self, action):
        assert self.action_space.contains(action), "%r (%s) invalid"%(action, type(action))
        data_required1 = action[0]
        energy_required1 = action[1]
        data_required2 = action[2]
        energy_required2 = action[3]
        data_required3 = action[4]
        energy_required3 = action[5]

        data1, latency1, energy_consumption1, fault1 = self.MB1.update(data_required1, energy_required1)
        data2, latency2, energy_consumption2, fault2 = self.MB2.update(data_required2, energy_required2)
        data3, latency3, energy_consumption3, fault3 = self.MB3.update(data_required3, energy_required3)

        data = data1 + data2 + data3
        latency = max(latency1, latency2, latency3)
        energy_consumption = energy_consumption1 + energy_consumption2 + energy_consumption3
        fault = fault1 + fault2 + fault3

        state = [self.MB1.CPU_shared, self.MB1.energy, self.MB2.CPU_shared, self.MB2.energy, self.MB3.CPU_shared,
                 self.MB3.energy]
        # print (state)
        self.state = tuple(state)
        self.training_data += data
        self.training_time += latency
        reward = 10 * (5 * data/self.max_data - latency/self.max_latency - energy_consumption/self.max_energy) + fault

        if (self.training_data > FederatedLearningEnv.DATA_LIMIT):
            done = True
        else:
            done = False
        # if (fault < 0):
        #     print (fault)
            # print(np.array(self.state), action, [reward, data, latency, energy_consumption, fault], done)
        reward /= 10
        return np.array(self.state), [reward, data, latency, energy_consumption, data1, data2, data3], done, {}

    def reset(self):
        self.state = []
        self.MB1.reset()
        self.MB2.reset()
        self.MB3.reset()
        state = [self.MB1.CPU_shared, self.MB1.energy, self.MB2.CPU_shared, self.MB2.energy, self.MB3.CPU_shared, self.MB3.energy]
        self.state = tuple(state)
        self.training_time = 0
        self.training_data = 0
        print(self.state)
        self.steps_beyond_done = None
        return np.array(self.state)

    def updateObservation(self):
        return

    def render(self, mode='human', close=False):
       return

    def close(self):
        """Override in your subclass to perform any necessary cleanup.
        Environments will automatically close() themselves when
        garbage collected or when the program exits.
        """
        raise NotImplementedError()

    def seed(self, seed=None):
        """Sets the seed for this env's random number generator(s).

        # Returns
            Returns the list of seeds used in this env's random number generators
        """
        raise NotImplementedError()

    def configure(self, *args, **kwargs):
        """Provides runtime configuration to the environment.
        This configuration should consist of data that tells your
        environment how to run (such as an address of a remote server,
        or path to your ImageNet data). It should not affect the
        semantics of the environment.
        """
        raise NotImplementedError()

# env = FederatedLearningEnv()
# env.reset()
# for index in range(0, 100):
#     env.step(env.action_space.sample())
Beispiel #5
0
class BlockchainNetworkingEnv(gym.Env):
    SUCCESS_REWARD = 5
    LATE_PROB = 1
    MAX_ATTACK = 0.1

    def __init__(self):
        # Channel parameters
        self.nb_channels = 4
        self.idleChannel = 1
        self.prob_switching = 0.9
        self.channelObservation = None
        self.prob_late = BlockchainNetworkingEnv.LATE_PROB
        self.cost_channels = [0.1, 0.1, 0.1, 0.1]

        # Blockchain parameters
        self.mempool = Mempool()
        self.userTransaction = Transaction()
        self.lastBlock = Block()
        self.hashRate = None
        self.doubleSpendSuccess = None

        # System parameters
        self.nb_past_observations = 4

        self.state_size = Mempool.NB_FEE_INTERVALS + 2 * self.nb_past_observations

        self.action_space = ActionSpace(self.nb_channels + 1)
        self.observation_space = StateSpace(
            (Discrete(Mempool.MAX_FEE), Discrete(Mempool.MAX_FEE),
             Discrete(Mempool.MAX_FEE), Discrete(Mempool.MAX_FEE),
             Discrete(Mempool.MAX_FEE), Discrete(Mempool.MAX_FEE),
             Discrete(Mempool.MAX_FEE), Discrete(Mempool.MAX_FEE),
             Discrete(Mempool.MAX_FEE), Discrete(Mempool.MAX_FEE),
             ActionSpace(self.nb_channels + 1), ChannelSpace(),
             ActionSpace(self.nb_channels + 1), ChannelSpace(),
             ActionSpace(self.nb_channels + 1), ChannelSpace(),
             ActionSpace(self.nb_channels + 1), ChannelSpace()))
        # reward define
        self.totalReward = 0
        self.successReward = 0
        self.channelCost = 0
        self.transactionFee = 0
        self.cost = 0

        self.viewer = None
        self.state = None
        self.steps_beyond_done = None

    def seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]

    def step(self, action):
        assert self.action_space.contains(
            action), "%r (%s) invalid" % (action, type(action))
        # reset the rewards
        self.totalReward = 0
        self.successReward = 0
        self.channelCost = 0
        self.transactionFee = 0
        self.prob_late = None
        self.attacked = False

        state = list(self.state)
        # 1. User's transaction initialization
        self.userTransaction = Transaction()
        if (len(self.lastBlock.blockTransaction) != 0):
            self.userTransaction.estimateFee(self.lastBlock)

        # 2. The channel state changes - single idle channel, round robin switching
        if (np.random.rand() < self.prob_switching):
            self.idleChannel = (self.idleChannel + 1) % self.nb_channels
            # print(self.idleChannel)

        # 3. Mempool updates - some new transactions come
        self.mempool.generateNewTransactions()

        # if user does not submit transaction
        if (action == 0):
            self.totalReward = 0
            self.channelObservation = 2
            # miners mine a block
            self.lastBlock.mineBlock(self.mempool)
        # if user submits transaction
        else:
            self.channelCost = self.cost_channels[action - 1]
            # in case, channel is idle
            if ((action - 1) == self.idleChannel):
                self.prob_late = 0
                self.channelObservation = 1
            # if channel is busy, transaction can be late of mining process
            else:
                self.prob_late = BlockchainNetworkingEnv.LATE_PROB
                self.channelObservation = 0

            # if the transaction comes late
            if (np.random.rand() < self.prob_late):
                # mining process occurs before user's transaction is added
                # 4. Miners start mining process, transactions which are included in Block will be removed from mempool
                self.lastBlock.mineBlock(self.mempool)
                self.mempool.listTransactions.append(self.userTransaction)
                self.transactionFee = self.userTransaction.transactionFee
            else:
                self.mempool.listTransactions.append(self.userTransaction)
                # 4. Miners start mining process, transactions which are included in Block will be removed from mempool
                self.lastBlock.mineBlock(self.mempool)
                self.transactionFee = self.userTransaction.transactionFee
                # 5. Attack process
                self.hashRate = np.random.uniform(
                    0, BlockchainNetworkingEnv.MAX_ATTACK)
                self.doubleSpendSuccess = 2 * self.hashRate
                if (np.random.rand() < self.doubleSpendSuccess):
                    self.attacked = True

                # if user's transaction is successfully added inti the block -> reward=2
                if (self.userTransaction in self.lastBlock.blockTransaction
                        and not self.attacked):
                    self.successReward = BlockchainNetworkingEnv.SUCCESS_REWARD

        self.totalReward = self.successReward - self.channelCost - self.transactionFee
        self.cost = self.channelCost + self.transactionFee

        # 6. determine new state
        self.mempool.updateMempoolState()
        for index in range(0, Mempool.NB_FEE_INTERVALS):
            state[index] = self.mempool.mempoolState[index]
        state.insert(Mempool.NB_FEE_INTERVALS, action)
        state.insert(Mempool.NB_FEE_INTERVALS + 1, self.channelObservation)
        state.pop()
        state.pop()
        self.state = tuple(state)
        done = False

        # print(np.array(self.state), [self.totalReward, self.cost], done, {})
        return np.array(self.state), [
            self.totalReward, self.channelCost, self.transactionFee, self.cost
        ], done, {}

    def reset(self):
        self.state = []
        self.mempool.resetMempool()
        self.idleChannel = 1
        for index in range(0, len(self.mempool.mempoolState)):
            self.state.append(self.mempool.mempoolState[index])
        for obs_index in range(0, self.nb_past_observations):
            self.state.append(0)
            self.state.append(2)
        print(self.state)
        self.steps_beyond_done = None
        return np.array(self.state)

    def updateObservation(self):
        return

    def render(self, mode='human', close=False):
        return

    def close(self):
        """Override in your subclass to perform any necessary cleanup.
        Environments will automatically close() themselves when
        garbage collected or when the program exits.
        """
        raise NotImplementedError()

    def seed(self, seed=None):
        """Sets the seed for this env's random number generator(s).

        # Returns
            Returns the list of seeds used in this env's random number generators
        """
        raise NotImplementedError()

    def configure(self, *args, **kwargs):
        """Provides runtime configuration to the environment.
        This configuration should consist of data that tells your
        environment how to run (such as an address of a remote server,
        or path to your ImageNet data). It should not affect the
        semantics of the environment.
        """
        raise NotImplementedError()


# env = BlockchainNetworkingEnv()
# env.reset()
# for index in range(0, 50):
#     env.step(np.random.randint(0, env.nb_channels))
Beispiel #6
0
class BCnetenv(gym.Env):
    '''
Actions:
    Type: MultiDiscrete form.
    1) Block_Size(shard)   :   Discrete 4  - 2MB[0], 4MB[1], 6MB[2], 8MB[3],   - params: min: 2, max: 8  (megabytes)
    2) Time Interval       :   Discrete 4  - 2[0]  ,   4[1],   6[2],   8[3]    - params: min: 2, max: 8  (seconds)
    3) number of shard (K) :   Discrete 4  - 1[0],     2[1],   4[2],   8[3]    - params: min: 1, max: 8
    MultiDiscrete([ 4, 4, 4 ])  -> we use discrete expression (64)
    0, 0 ,0 ->0
    0, 0, 1 ->1
    0, 0, 2 ->2
    ...
    3, 3, 3 -> 63

state space:
    Type:
    Num       state                    Min       Max     format
    0    data transmission link      10MHZ    100MHZ      nxn
    1     computing capability       10GHZ     30GHZ      nx1
    2      consensus history           0         1        nxn
    3 estimated faulty probability     0        1/3       nx1

:
    Type: Box(2)
    num     observation        min       max
    0        latency           0         48
    1   required shard limit   1          8

    '''
    def __init__(self):
        # Simulation parameters
        self.nb_nodes = 200
        self.tx_size = 200  #bytes
        self.B_max = 8  #Megabytes
        self.Ti_amx = 8  #seconds
        self.K_max = 8  # maximum shard number
        self.sign = 2  # MHZ
        self.MAC = 1  # MHZ
        self.batchsize = 3
        self.u = 6  # consecutive block confirm
        self.trans_prob = 0.5  # Transition Probability in Finite Markov Chain

        # define action space & observation_space
        self.action_space = ActionSpace(512)
        self.observation_space = spaces.Box(low=np.array([0, 1]),
                                            high=np.array([48, 8]),
                                            dtype=np.float32)

        self.seed()
        self.viewer = None
        self.state = None
        self.steps_beyond_done = None

        # state 불러오기. ShardDist함수의 return값을 각각 R,c,H,e_prob로 할당하도록함.
        # 여기서 state는 main의 진짜 state에 필요한 구성요소들을 각각 업데이트하는것임.
        self.R_transmission = None
        self.c_computing = None
        self.H_history = None
        self.e_prob = None
        self.reward = 0

    def seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]

    def step(self, action):
        # step 함수 진행하면서 state space 를 update

        assert self.action_space.contains(
            action), "%r (%s) invalid" % (action, type(action))
        state = self.state
        R, C, H, e_prob = state

        a = action // 128  # block size (0~3)  2, 4, 6, 8
        b = (action -
             128 * a) // 16  # # of shard (1~8)  1, 2 ,3 ,4 ,5 ,6, 7, 8
        c = (action - (128 * a) - (16 * b)
             )  # time interval (0~15)  0.5/1/1.5 ~~~ 16

        b_size = 2 * (a + 1)  # block size 2,4,6,8 (4)
        t_interval = 0.5 * (c + 1)  # time interval 0.5, 1, 1.5 ~ ,8 (16)
        n_shard = b + 1  # number of shard 1,2,3,4,5,6,7,8 (8)

        # R 업데이트 finite markov channel 기반.
        for i in range(0, self.nb_nodes):
            for j in range(i + 1, self.nb_nodes):
                random_number = random.random()
                if (R[i, j] == 10 * (10**6)):
                    if (random_number < self.trans_prob):
                        R[i, j] += 10 * (10**6)
                        R[j, i] = R[i, j]
                elif (R[i, j] == 100 * (10**6)):
                    if (random_number < self.trans_prob):
                        R[i, j] -= 10 * (10**6)
                        R[j, i] = R[i, j]
                else:
                    if (random_number < self.trans_prob):
                        R[i, j] += 10 * (10**6)
                        R[j, i] = R[i, j]
                    elif (self.trans_prob <= random_number <
                          2 * self.trans_prob):
                        R[i, j] -= 10 * (10**6)
                        R[j, i] = R[i, j]

        # C 업데이트 finite markov channel 기반.
        for i in range(0, self.nb_nodes):
            for j in range(0, self.nb_nodes):
                random_number = random.random()
                if (C[i, j] == 10 * (10**9)):
                    if (random_number < self.trans_prob):
                        C[i, j] += 5 * (10**9)
                elif (C[i, j] == 30 * (10**9)):
                    if (random_number < self.trans_prob):
                        C[i, j] -= 5 * (10**9)
                else:
                    if (random_number < self.trans_prob):
                        C[i, j] += 5 * (10**9)
                    elif (self.trans_prob <= random_number <
                          2 * self.trans_prob):
                        C[i, j] -= 5 * (10**9)
        env2 = ShardDistribute()

        H, e_prob, NodesInShard, Success_ratio, FCP = env2.ShardDist(n_shard)
        self.state = [R, C, H, e_prob]
        e_p = e_prob[0, 0]  # constraint에 쓸 변수를 여기서 미리 불러옴

        # latency 계산시 R,c로부터 max/min값을 추출하여 latency 세부요소들 전부 계산
        # M,theta,C_numb,alpha,B,timeout 값 설
        M = 3
        theta = 2 * (10**6)

        alpha = 2 * 10**6
        beta = 10**6
        B = b_size * 8 * 10**6
        timeout = 2.2  #2.2 #3.2 #  0.64 에서 최대 6.4초. 중간을 기점으로 threshold 설정
        nb_nodes = self.nb_nodes

        ### latency computation (Sharding) (2이상일 때)
        if (n_shard >= 2):
            C_numb = len(NodesInShard[n_shard])

            # 1) Intra 샤드에서 validation time 계산
            T_k_in_val = []
            primary = []
            for K in range(n_shard):
                primary.append(NodesInShard[K][random.randint(
                    0,
                    len(NodesInShard[K]) - 1)])

                T_in_val = []
                for i in NodesInShard[K]:
                    if (i == primary[K]):
                        T_in_val.append(
                            (M * theta +
                             (M * (1 + C_numb) + 4 *
                              (len(NodesInShard[K]) - 1)) * alpha) / C[i][0])
                    else:
                        T_in_val.append(
                            (M * theta +
                             (C_numb * M + 4 *
                              (len(NodesInShard[K]) - 1)) * alpha) / C[i][0])
                T_k_in_val.append(max(T_in_val))
            T_k_in_val = (1 / M) * max(T_k_in_val)
            # 2) Intra 샤드에서 propagation time 계산
            T_k_in_prop = []
            for K in range(n_shard):

                T_in_preprepare = []
                T_in_prepare = []
                T_in_commit = []

                for i in NodesInShard[K]:
                    for j in NodesInShard[K]:
                        if (j != i):
                            if (i == primary[K]):
                                T_in_preprepare.append((M * B) / R[i, j])
                            else:
                                T_in_prepare.append((M * B) / R[i, j])
                            T_in_commit.append((M * B) / R[i, j])

                T_k_in_prop.append(
                    min(max(T_in_preprepare), timeout) +
                    min(max(T_in_prepare), timeout) +
                    min(max(T_in_commit), timeout))
            T_k_in_prop = (1 / M) * max(T_k_in_prop)

            # 3) DC (Final shard)에서 validation time 계산
            primary_DC = NodesInShard[n_shard][random.randint(
                0,
                len(NodesInShard[n_shard]) - 1)]

            T_k_f_val = []
            for i in NodesInShard[n_shard]:
                if (i == primary_DC):
                    T_k_f_val.append(
                        (n_shard * M * theta +
                         (n_shard * M + 4 * (C_numb - 1) +
                          (self.nb_nodes - C_numb) * M) * alpha) / C[i][0])
                else:
                    T_k_f_val.append(
                        (n_shard * M * theta +
                         (4 * (C_numb - 1) +
                          (self.nb_nodes - C_numb) * M) * alpha) / C[i][0])
            T_k_f_val = (1 / M) * max(T_k_f_val)

            # 4) DC (Final shard)에서 propagation time 계산
            T_k_f_request = []
            T_k_f_preprepare = []
            T_k_f_prepare = []
            T_k_f_commit = []
            T_k_f_reply = []

            for i in primary:
                for j in NodesInShard[n_shard]:
                    T_k_f_request.append((M * B) / R[i, j])

            for i in NodesInShard[n_shard]:
                for j in NodesInShard[n_shard]:
                    if (j != i):
                        if (i == primary_DC):
                            T_k_f_preprepare.append((M * B) / R[i, j])
                        else:
                            T_k_f_prepare.append((M * B) / R[i, j])
                        T_k_f_commit.append((M * B) / R[i, j])

            for i in NodesInShard[n_shard]:
                for j in primary:
                    T_k_f_reply.append((M * B) / R[i, j])

            T_k_f_prop = (1 / M) * (min(max(T_k_f_request), timeout) +
                                    min(max(T_k_f_preprepare), timeout) +
                                    min(max(T_k_f_prepare), timeout) +
                                    min(max(T_k_f_commit), timeout) +
                                    min(max(T_k_f_request), timeout))
            # 최종 latency의 값은 block interval + 위 4가지 time
            Tlatency = t_interval + (T_k_in_val + T_k_in_prop + T_k_f_val +
                                     T_k_f_prop)

        else:  #Shard가 1개일땐 PBFT

            T_V = []
            client = random.randint(0, nb_nodes - 1)
            primary = random.randint(0, nb_nodes - 1)
            while (primary == client):
                primary = random.randint(0, nb_nodes - 1)

            for i in range(nb_nodes):
                if (i == primary):
                    T_V.append((M * alpha + beta * (2 * M + 4 *
                                                    (nb_nodes - 1))) / C[i][0])
                elif (i != client):
                    T_V.append((M * alpha + beta * (M + 4 * (nb_nodes - 1))) /
                               C[i][0])
            T_V = (1 / M) * max(T_V)

            t1 = min((M * B / R[client, primary]), timeout)
            t2 = []
            for i in range(nb_nodes):
                if ((i != client) & (i != primary)):
                    t2.append(M * B / R[primary, i])
            t2 = min(max(t2), timeout)
            t3 = []
            for i in range(nb_nodes):
                for j in range(nb_nodes):
                    if ((j != i) & (i != client) & (j != client)):
                        t3.append(M * B / R[i, j])
            t3 = min(max(t3), timeout)
            t4 = []
            for i in range(nb_nodes):
                for j in range(nb_nodes):
                    if (j != i):
                        t4.append(M * B / R[i, j])
            t4 = min(max(t4), timeout)
            t5 = []
            for i in range(nb_nodes):
                for j in range(nb_nodes):
                    if (i != client):
                        t5.append(M * B / R[i, client])
            t5 = min(max(t5), timeout)

            T_D = (1 / M) * (t1 + t2 + t3 + t4 + t5)

            Tlatency = t_interval + T_V + T_D

### constraint (latency & shard)
        done_t = Tlatency > self.u * t_interval
        constraint = 0

        ### const 1
        if n_shard == 1:
            done_n = False
        else:
            constraint = (self.nb_nodes *
                          (1 - (3 * e_p)) - 1) / (3 * self.nb_nodes * e_p + 1)
            done_n = (n_shard >= constraint)
            #########lemma1
#### const 2
# constraint = (((2*self.nb_nodes) / (3*(self.nb_nodes * e_p +1))) -1)
#done_n = n_shard >=  (((2*self.nb_nodes) / (3*(self.nb_nodes * e_p +1))) -1)
#        #### lemma2

# done_n =False # no security bound
        done = done_t or done_n
        done = bool(done)

        #성공한샤드 = prob* K

        #done 이 1인경우, 즉 끝났다면(조건을 위반하여) reward는 0
        #done이 0인 경우, reward는 TPS를 반영한다.
        reward = self.reward

        if not done:

            reward = Success_ratio * M * ((n_shard * (math.floor(
                (b_size / self.tx_size) * 1000 * 1000))) / t_interval)
        elif self.steps_beyond_done is None:  ## step beyond done?
            self.steps_beyond_done = 0

        else:  # done인 경우,
            if self.steps_beyond_done == 0:
                logger.warn(
                    "You are calling 'step()' even though this environment has already returned done = True. "
                    "You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior."
                )
            self.steps_beyond_done += 1
            reward = 0

        self.reward = float(reward)
        print('reward', reward)

        const = [
            Tlatency, b_size, t_interval, n_shard, constraint, done_t, done_n,
            e_p, FCP
        ]
        print(const)
        ##### state change 적용해서 R,C,H,e_prop 업데이트.
        ### 리턴되어야 하는 값은, action이 들어왔을때, 변경된 R,C,H,e-Prob
        return self.state, self.reward, done, const, {
        }  ## 카트폴에서는 self.state에 np.array가 있는데, 여기서는 풀어줘야함

    def reset(self):
        # state space - > R,c,H,e_prob reset.
        R_transmission = np.zeros((self.nb_nodes, self.nb_nodes))
        c_computing = np.zeros((self.nb_nodes, 1))

        for i in range(0, self.nb_nodes):
            for j in range(i + 1, self.nb_nodes):
                R_transmission[i, j] = random.randrange(10, 101, 10)
                R_transmission[j, i] = R_transmission[i, j]
        R_transmission = (10**6) * R_transmission  # 200x200
        for i in range(0, self.nb_nodes):
            c_computing[i] = random.randrange(10, 31, 5)
        c_computing = (10**9) * c_computing  # 200x1
        c_computing = np.kron(c_computing, np.ones(
            (1, self.nb_nodes)))  # 200x200으로 확장한뒤 H_his에 대입

        n_shard = random.randrange(1, 9)
        env2 = ShardDistribute()
        H, e_prob, NodesInShard, Success_ratio, FCP = env2.ShardDist(n_shard)

        # H, e_prob는 shardDist를 통해 get
        self.state = [R_transmission, c_computing, H, e_prob]
        return self.state