def legacy_make_test_rewards(
    n_questions: int,
    n_rewards: int,
    true_reward: np.ndarray,
    epsilons: List[float],
    use_equiv: bool,
) -> Dict[float, Tuple[np.ndarray, np.ndarray]]:
    """ Generates n_rewards reward vectors and determines which are aligned. """
    assert n_rewards > 0
    assert_reward(true_reward, use_equiv)

    trajs = make_random_questions(n_questions, Driver())
    _, normals = make_normals(trajs, Driver(), use_equiv)
    gt_pref = true_reward @ normals.T > 0
    normals = orient_normals(normals, gt_pref, use_equiv)
    assert_normals(normals, use_equiv)

    n_reward_features = normals.shape[1]

    test_rewards: Dict[float, Tuple[np.ndarray, np.ndarray]] = {}

    for epsilon in epsilons:
        assert epsilon >= 0.0

        cov = 1.0

        rewards = make_gaussian_rewards(n_rewards,
                                        use_equiv,
                                        mean=true_reward,
                                        cov=cov)
        normals = normals[true_reward @ normals.T > epsilon]
        ground_truth_alignment = cast(np.ndarray,
                                      np.all(rewards @ normals.T > 0, axis=1))
        mean_agree = np.mean(ground_truth_alignment)

        while mean_agree > 0.55 or mean_agree < 0.45:
            if mean_agree > 0.55:
                cov *= 1.1
            else:
                cov /= 1.1
            if not np.isfinite(cov) or cov <= 0.0 or cov >= 100.0:
                # TODO(joschnei): Break is a code smell
                logging.warning(
                    f"cov={cov}, using last good batch of rewards.")
                break
            rewards = make_gaussian_rewards(n_rewards,
                                            use_equiv,
                                            mean=true_reward,
                                            cov=cov)
            normals = normals[true_reward @ normals.T > epsilon]
            ground_truth_alignment = cast(
                np.ndarray, np.all(rewards @ normals.T > 0, axis=1))
            mean_agree = np.mean(ground_truth_alignment)

        assert ground_truth_alignment.shape == (n_rewards, )
        assert rewards.shape == (n_rewards, n_reward_features)

        test_rewards[epsilon] = (rewards, ground_truth_alignment)

    return test_rewards
def load_elicitation(
    datadir: Path,
    normals_name: Union[str, Path],
    preferences_name: Union[str, Path],
    input_features_name: Union[str, Path],
    n_reward_features: int,
    use_equiv: bool,
    query_type: Optional[str] = None,
    equiv_probability: Optional[float] = None,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    """ Loads and postprocesses elicitation.py output"""
    normals = np.load(datadir / normals_name)
    preferences = np.load(datadir / preferences_name)
    input_features = np.load(datadir / input_features_name)

    if use_equiv:
        assert equiv_probability is not None
        normals = add_equiv_constraints(preferences,
                                        normals,
                                        equiv_prob=equiv_probability)
    elif query_type == "weak":
        preferences, normals, input_features = remove_equiv(
            preferences,
            normals,
            input_features,
        )

    assert_normals(normals, False, n_reward_features)
    assert_nonempty(normals, preferences, input_features)

    return normals, preferences, input_features
def run_test(normals: np.ndarray, test_rewards: np.ndarray,
             use_equiv: bool) -> np.ndarray:
    """ Returns the predicted alignment of the fake rewards by the normals. """
    assert_normals(normals, use_equiv)
    results = cast(np.ndarray,
                   np.all(np.dot(test_rewards, normals.T) > 0, axis=1))
    return results
def test_orient_normals(actions: np.ndarray, reward: np.ndarray):
    reward = safe_normalize(reward)

    _, normals = make_normals(inputs=actions, sim=Driver(), use_equiv=False)
    value_diffs = reward @ normals.T
    prefs = value_diffs > 0

    oriented_normals = orient_normals(normals, preferences=prefs)
    assert_normals(oriented_normals)
    assert np.all(reward @ oriented_normals.T == np.abs(value_diffs))
def main(datadir: Path) -> None:
    logging.basicConfig(level="INFO")

    datadir = Path(datadir)

    flags = pickle.load(open(datadir / "flags.pkl", "rb"))
    use_equiv = False
    sim = Driver()
    n_reward_features = sim.num_of_features

    inputs = np.load(datadir / "inputs.npy")
    n_questions = inputs.shape[0]
    assert inputs.shape[1] == 2

    input_features = np.load(datadir / "input_features.npy")
    n_questions = input_features.shape[0]
    assert input_features.shape == (n_questions, 2, n_reward_features), input_features.shape

    assert_input_feature_consistency(inputs, input_features, sim)

    normals = np.load(datadir / "normals.npy")
    logging.info(f"There are {normals.shape[0]} questions")
    assert_normals(normals, use_equiv, n_reward_features)

    assert_normal_consistency(input_features, normals)

    preferences = np.load(datadir / "preferences.npy")
    assert preferences.shape == (n_questions,)
    assert np.all((preferences == 1) | (preferences == -1))

    oriented_normals = orient_normals(normals, preferences)

    if (datadir / "true_reward.npy").exists():
        true_reward = np.load(datadir / "true_reward.npy")
        assert_reward(true_reward, use_equiv, n_reward_features)
        logging.info(f"true_reward={true_reward}")
        assert_true_reward_consistency(oriented_normals, true_reward)

    if (datadir / "mean_reward.npy").exists():
        mean_reward = np.load(datadir / "mean_reward.npy")
        logging.info(f"mean_reward={mean_reward}")
        assert_reward(mean_reward, use_equiv, n_reward_features)

        mean_accuracy = np.mean(oriented_normals @ mean_reward > 0)
        logging.info(f"Accuracy of mean reward function is {mean_accuracy}")
def simulated(
    epsilons: List[float] = [0.0],
    n_rewards: int = 100,
    human_samples: List[int] = [1],
    n_reward_samples: int = 1000,
    n_test_states: Optional[int] = None,
    n_gt_test_questions: int = 10000,
    traj_opt: bool = False,
    datadir: Path = Path(),
    outdir: Path = Path(),
    deltas: List[Optional[float]] = [None],
    use_mean_reward: bool = False,
    use_random_test_questions: bool = False,
    n_random_test_questions: Optional[int] = None,
    use_cheating_questions: bool = False,
    skip_remove_duplicates: bool = False,
    skip_epsilon_filtering: bool = False,
    skip_redundancy_filtering: bool = False,
    use_true_epsilon: bool = False,
    legacy_test_rewards: bool = False,
    replications: Optional[Union[str, Tuple[int, ...]]] = None,
    n_cpus: int = 1,
    overwrite_test_rewards: bool = False,
    overwrite_results: bool = False,
    verbosity: Literal["INFO", "DEBUG"] = "INFO",
) -> None:
    """ Evaluates alignment test generated by ground-truth rewards. """
    logging.basicConfig(level=verbosity,
                        format="%(levelname)s:%(asctime)s:%(message)s")

    if replications is not None:
        replication_indices = parse_replications(replications)

        for replication in replication_indices:
            if not (datadir / str(replication)).exists():
                logging.warning(
                    f"Replication {replication} does not exist, skipping")
                continue

            logging.info(f"Starting replication {replication}")

            simulated(
                epsilons=epsilons,
                deltas=deltas,
                n_rewards=n_rewards,
                human_samples=human_samples,
                n_reward_samples=n_reward_samples,
                n_test_states=n_test_states,
                n_gt_test_questions=n_gt_test_questions,
                datadir=datadir / str(replication),
                outdir=outdir / str(replication),
                use_mean_reward=use_mean_reward,
                use_random_test_questions=use_random_test_questions,
                use_cheating_questions=use_cheating_questions,
                n_random_test_questions=n_random_test_questions,
                skip_remove_duplicates=skip_remove_duplicates,
                skip_epsilon_filtering=skip_epsilon_filtering,
                skip_redundancy_filtering=skip_redundancy_filtering,
                use_true_epsilon=use_true_epsilon,
                legacy_test_rewards=legacy_test_rewards,
                n_cpus=n_cpus,
                overwrite_test_rewards=overwrite_test_rewards,
                overwrite_results=overwrite_results,
                verbosity=verbosity,
            )
        exit()

    logging.info(f"Using {n_cpus} cpus.")
    parallel = Parallel(n_jobs=n_cpus)

    outdir.mkdir(parents=True, exist_ok=True)

    if n_random_test_questions is not None:
        # Argh defaults to parsing something as a string if its optional
        n_random_test_questions = int(n_random_test_questions)

    flags = pkl.load(open(datadir / flags_name, "rb"))
    query_type = flags["query_type"]
    equiv_probability = flags["equiv_size"]

    env = Driver()
    n_reward_features = env.num_of_features

    logging.info("Loading elicitation results")
    elicited_normals, elicited_preferences, elicited_input_features = load_elicitation(
        datadir=datadir,
        normals_name=normals_name,
        preferences_name=preferences_name,
        input_features_name=input_features_name,
        n_reward_features=n_reward_features,
        use_equiv=use_equiv,
        query_type=query_type,
        equiv_probability=equiv_probability,
    )
    true_reward = np.load(datadir / true_reward_name)
    assert_reward(true_reward, False, n_reward_features)

    if use_equiv:
        true_reward = np.append(true_reward, [1])
    else:
        assert not np.any(elicited_preferences == 0)

    factory = TestFactory(
        query_type=query_type,
        reward_dimension=elicited_normals.shape[1],
        equiv_probability=equiv_probability,
        n_reward_samples=n_reward_samples,
        use_mean_reward=use_mean_reward,
        skip_dedup=skip_remove_duplicates,
        skip_noise_filtering=True,
        skip_epsilon_filtering=skip_epsilon_filtering,
        skip_redundancy_filtering=skip_redundancy_filtering,
        use_true_epsilon=use_true_epsilon,
        true_reward=true_reward,
    )
    logging.info(f"""Filtering settings:
    # reward samples={n_reward_samples},
    use mean reward={use_mean_reward},
    skip duplicates={skip_remove_duplicates}
    skip noise={True}
    skip epsilon={skip_epsilon_filtering}
    skip redundancy={skip_redundancy_filtering}
    use true epsilon={use_true_epsilon}
    """)

    confusion_path, test_path = make_outnames(
        outdir,
        skip_remove_duplicates,
        True,
        skip_epsilon_filtering,
        skip_redundancy_filtering,
    )
    confusions: Dict[Experiment, np.ndarray] = load(confusion_path,
                                                    overwrite_results,
                                                    default={})
    minimal_tests: Dict[Experiment, np.ndarray] = load(test_path,
                                                       overwrite_results,
                                                       default={})

    experiments = make_experiments(epsilons,
                                   deltas,
                                   human_samples,
                                   overwrite_results,
                                   experiments=set(minimal_tests.keys()))

    if use_random_test_questions:
        logging.info("Making random test")
        logging.info(f"True reward: {true_reward}")
        normals, preferences, input_features = make_random_test(
            n_random_test_questions,
            elicited_input_features,
            elicited_preferences,
            reward_iterations=flags["reward_iterations"],
            query_type=query_type,
            equiv_size=flags["equiv_size"],
            sim=env,
            use_equiv=use_equiv,
        )

        good_indices = (true_reward @ normals.T) > 0

        logging.info(
            f"{np.mean(good_indices)*100:2f}% of new test questions agree with gt reward."
        )

        if use_cheating_questions:
            logging.info(f"Selecting only questions consistent with gt reward")
            normals = normals[good_indices]
            preferences = preferences[good_indices]
            input_features = input_features[good_indices]

        assert_normals(normals, use_equiv)
    else:
        max_n = max(human_samples)
        preferences = elicited_preferences[:max_n]
        input_features = elicited_input_features[:max_n]
        logging.debug(f"elicited_normals={elicited_normals[:10]}")
        normals = orient_normals(elicited_normals[:max_n], preferences,
                                 use_equiv, n_reward_features)
        logging.debug(f"normals={normals[:10]}")

        assert np.all(true_reward @ normals.T >= 0)

    if not legacy_test_rewards:
        test_rewards = make_test_rewards(
            epsilons=epsilons,
            true_reward=true_reward,
            n_rewards=n_rewards,
            n_test_states=n_test_states,
            n_gt_test_questions=int(n_gt_test_questions),
            traj_opt=traj_opt,
            outdir=outdir,
            parallel=parallel,
            use_equiv=use_equiv,
            overwrite=overwrite_test_rewards,
        )
    else:
        test_rewards = legacy_make_test_rewards(1000, n_rewards, true_reward,
                                                epsilons, use_equiv)

    for indices, confusion, experiment in parallel(
            delayed(run_gt_experiment)(
                normals=normals,
                test_rewards=test_rewards[epsilon][0],
                test_reward_alignment=test_rewards[epsilon][1],
                epsilon=epsilon,
                delta=delta,
                use_equiv=use_equiv,
                n_human_samples=n,
                factory=factory,
                input_features=input_features,
                preferences=preferences,
                outdir=outdir,
                verbosity=verbosity,
            ) for epsilon, delta, n in experiments):
        minimal_tests[experiment] = indices
        confusions[experiment] = confusion

    pkl.dump(confusions, open(confusion_path, "wb"))
    pkl.dump(minimal_tests, open(test_path, "wb"))
def test_make_normals(actions: np.ndarray):
    features, normals = make_normals(inputs=actions, sim=Driver(), use_equiv=False)
    assert np.all((features[0][0] - features[0][1]) == normals)
    assert_normals(normals)
def make_normals(input_features: np.ndarray) -> np.ndarray:
    normals = input_features[:, 0] - input_features[:, 1]
    assert_normals(normals, False, input_features.shape[2])
    return normals