def __poolfeature__(feature,ylabel,title,fname,cr,info,path):
    if not os.path.exists(path):
        os.makedirs(path)
    
    cut = getballistictrials(cr)
    m = cut.groupby(level=['subject','session'])[feature].mean()
    e = cut.groupby(level=['subject','session'])[feature].std()
    d = activitytables.groupbylesionvolumes(pd.concat([m,e],axis=1),info)
    fig = plt.figure()
    ax = plt.gca()
    activityplots.sessionmetric(d,ax=ax,colorcycle=colorcycle)
    plt.ylabel(ylabel)
    plt.title(title)
    fpath = os.path.join(path,fname)
    plt.savefig(fpath)
    plt.close(fig)
Beispiel #2
0
def __poolfeature__(feature, ylabel, title, fname, cr, info, path):
    if not os.path.exists(path):
        os.makedirs(path)

    cut = getballistictrials(cr)
    m = cut.groupby(level=['subject', 'session'])[feature].mean()
    e = cut.groupby(level=['subject', 'session'])[feature].std()
    d = activitytables.groupbylesionvolumes(pd.concat([m, e], axis=1), info)
    fig = plt.figure()
    ax = plt.gca()
    activityplots.sessionmetric(d, ax=ax, colorcycle=colorcycle)
    plt.ylabel(ylabel)
    plt.title(title)
    fpath = os.path.join(path, fname)
    plt.savefig(fpath)
    plt.close(fig)
def __poolfeatureconditions__(feature,conditions,ylabel,title,fname,cr,info,path):
    if not os.path.exists(path):
        os.makedirs(path)
    
    labels = range(len(conditions))
    cr = resetsessionindex(cr,labels,labels[-1])
    info = resetsessionindex(info,labels,labels[-1])
    cut = getballistictrials(cr)
    m = cut.groupby(level=['subject','session'])[feature].mean()
    e = cut.groupby(level=['subject','session'])[feature].std()
    d = activitytables.groupbylesionvolumes(pd.concat([m,e],axis=1),info)
    fig = plt.figure()
    ax = plt.gca()
    activityplots.sessionmetric(d,ax=ax,colorcycle=colorcycle,connect=False)
    plt.xlabel('')
    plt.xticks(labels,conditions)
    plt.ylabel(ylabel)
    plt.title(title)
    fpath = os.path.join(path,fname)
    plt.savefig(fpath)
    plt.close(fig)
Beispiel #4
0
def __poolfeatureconditions__(feature, conditions, ylabel, title, fname, cr,
                              info, path):
    if not os.path.exists(path):
        os.makedirs(path)

    labels = range(len(conditions))
    cr = resetsessionindex(cr, labels, labels[-1])
    info = resetsessionindex(info, labels, labels[-1])
    cut = getballistictrials(cr)
    m = cut.groupby(level=['subject', 'session'])[feature].mean()
    e = cut.groupby(level=['subject', 'session'])[feature].std()
    d = activitytables.groupbylesionvolumes(pd.concat([m, e], axis=1), info)
    fig = plt.figure()
    ax = plt.gca()
    activityplots.sessionmetric(d, ax=ax, colorcycle=colorcycle, connect=False)
    plt.xlabel('')
    plt.xticks(labels, conditions)
    plt.ylabel(ylabel)
    plt.title(title)
    fpath = os.path.join(path, fname)
    plt.savefig(fpath)
    plt.close(fig)
def figure1b(rr,info,path):
    if not os.path.exists(path):
        os.makedirs(path)
    
    rr = rr.query('session > 0')
    info = info.query('session > 0')
    rrdiff = rr.groupby(level=[0,1]).diff()
    nulldiff = rrdiff.time.isnull()
    firstrr = rr.time[nulldiff] - info.starttime
    rrdiff.time[nulldiff] = firstrr
    rrsec = rrdiff.time.map(lambda x:x / np.timedelta64(1, 's'))
    rrdata = rrsec.groupby(level=[0,1]).mean()
    rryerr = rrsec.groupby(level=[0,1]).std()
    rrgdata = activitytables.groupbylesionvolumes(pd.concat([rrdata,rryerr],axis=1),info)
    
    fig = plt.figure()
    activityplots.sessionmetric(rrgdata)
    plt.ylabel('time between rewards (s)')
    plt.title('performance curve')
    fname = 'performance_curve.png'
    fpath = os.path.join(path,fname)
    plt.savefig(fpath)
    plt.close(fig)
Beispiel #6
0
def figure1b(rr, info, path):
    if not os.path.exists(path):
        os.makedirs(path)

    rr = rr.query('session > 0')
    info = info.query('session > 0')
    rrdiff = rr.groupby(level=[0, 1]).diff()
    nulldiff = rrdiff.time.isnull()
    firstrr = rr.time[nulldiff] - info.starttime
    rrdiff.time[nulldiff] = firstrr
    rrsec = rrdiff.time.map(lambda x: x / np.timedelta64(1, 's'))
    rrdata = rrsec.groupby(level=[0, 1]).mean()
    rryerr = rrsec.groupby(level=[0, 1]).std()
    rrgdata = activitytables.groupbylesionvolumes(
        pd.concat([rrdata, rryerr], axis=1), info)

    fig = plt.figure()
    activityplots.sessionmetric(rrgdata)
    plt.ylabel('time between rewards (s)')
    plt.title('performance curve')
    fname = 'performance_curve.png'
    fpath = os.path.join(path, fname)
    plt.savefig(fpath)
    plt.close(fig)