def __init__(self, model, loader, lr, device, writer, step, optim_choose='adam'):
     self.model = model
     self.loader = loader
     self.criterion1 = nn.MSELoss(size_average=True).to(device)
     # self.criterion2 = pytorch_ssim.SSIM()
     self.criterion3 = COS_Loss().to(device)
     self.criterion4 = VGG_Encoder()
     self.device = device
     self.writer = writer
     self.step = step
     parameters1 = []
     parameters2 = []
     parameters1.append( {'params': self.model.decomposer.encoder2.parameters(), 'lr': lr} )
     parameters1.append( {'params': self.model.decomposer.decoder_normals.parameters(), 'lr': lr} )
     parameters1.append( {'params': self.model.decomposer.decoder_lights.parameters(), 'lr': lr} )
     parameters1.append( {'params': self.model.shader.parameters(), 'lr': lr} )
     parameters2.append( {'params': self.model.decomposer.encoder1.parameters(), 'lr': lr} )
     parameters2.append( {'params': self.model.decomposer.decoder_reflectance.parameters(), 'lr': lr} )
     # parameters1.append( {'params': self.model.reflection.parameters(), 'lr': lr} )
     # parameters2.append( {'params': self.model.shader.parameters(), 'lr': lr} )
     if optim_choose == 'adam':
         self.optimizer1 = optim.Adam(parameters1, lr=lr)
         self.optimizer2 = optim.Adam(parameters2, lr=lr)
     elif optim_choose == 'adabound':
         self.optimizer1 = adabound.AdaBound(parameters1, lr=lr, final_lr=0.1)
         self.optimizer2 = adabound.AdaBound(parameters2, lr=lr, final_lr=0.1)
Beispiel #2
0
def get_optimizer(cfg, model):
    optimizer = None
    if cfg.MODEL.FINETUNE:
        if cfg.TRAIN.OPTIMIZER == 'sgd':
            optimizer = optim.SGD(filter(lambda p: p.requires_grad,
                                         model.parameters()),
                                  lr=cfg.TRAIN.LR,
                                  momentum=cfg.TRAIN.MOMENTUM,
                                  weight_decay=cfg.TRAIN.WD,
                                  nesterov=cfg.TRAIN.NESTEROV)
        elif cfg.TRAIN.OPTIMIZER == 'adam':
            optimizer = optim.Adam(filter(lambda p: p.requires_grad,
                                          model.parameters()),
                                   lr=cfg.TRAIN.LR)
        elif cfg.TRAIN.OPTIMIZER == 'adam_amsgrad':
            optimizer = optim.Adam(filter(lambda p: p.requires_grad,
                                          model.parameters()),
                                   lr=cfg.TRAIN.LR,
                                   amsgrad=True)
        elif cfg.TRAIN.OPTIMIZER == 'adamw':
            optimizer = AdamW(
                filter(lambda p: p.requires_grad, model.parameters()),
                lr=cfg.TRAIN.LR,
                weight_decay=1e-4,
            )
        elif cfg.TRAIN.OPTIMIZER == 'adabound':
            optimizer = adabound.AdaBound(
                filter(lambda p: p.requires_grad, model.parameters()),
                lr=cfg.TRAIN.LR,
                final_lr=0.1,
            )
    else:
        if cfg.TRAIN.OPTIMIZER == 'sgd':
            optimizer = optim.SGD(model.parameters(),
                                  lr=cfg.TRAIN.LR,
                                  momentum=cfg.TRAIN.MOMENTUM,
                                  weight_decay=cfg.TRAIN.WD,
                                  nesterov=cfg.TRAIN.NESTEROV)
        elif cfg.TRAIN.OPTIMIZER == 'adam':
            optimizer = optim.Adam(model.parameters(), lr=cfg.TRAIN.LR)
        elif cfg.TRAIN.OPTIMIZER == 'adam_amsgrad':
            optimizer = optim.Adam(model.parameters(),
                                   lr=cfg.TRAIN.LR,
                                   amsgrad=True)
        elif cfg.TRAIN.OPTIMIZER == 'adamw':
            optimizer = AdamW(
                model.parameters(),
                lr=cfg.TRAIN.LR,
                weight_decay=1e-4,
            )
        elif cfg.TRAIN.OPTIMIZER == 'adabound':
            optimizer = adabound.AdaBound(
                model.parameters(),
                lr=cfg.TRAIN.LR,
                final_lr=0.1,
            )

    return optimizer
Beispiel #3
0
 def prep_optim(self):
     if self.args.optim == "adam":
         self.optimizer = optim.Adam(self.model.parameters(),
                                     lr=self.args.lr)
     elif self.args.optim == "adabound":
         self.optimizer = adabound.AdaBound(self.model.parameters(),
                                            lr=self.args.lr)
     elif self.args.optim == "rmsprop":
         self.optimizer = optim.RMSprop(self.model.parameters(),
                                        lr=self.args.lr)
     elif self.args.optim == "sgd":
         self.optimizer = optim.SGD(self.model.parameters(),
                                    lr=self.args.lr)
     elif self.args.optim == "bfgs":
         self.optimizer = optim.LBFGS(self.model.parameters(),
                                      lr=self.args.lr)
     elif self.args.optim == "adamw":
         self.optimizer = optim.AdamW(self.model.parameters(),
                                      lr=self.args.lr)
     elif self.args.optim == "asgd":
         self.optimizer = optim.ASGD(self.model.parameters(),
                                     lr=self.args.lr)
     else:
         print("Invalid optimizer chosen")
         raise
def get_optimizer(trial, model_ft):
    lr = trial.suggest_loguniform('learning_rate', 1e-7, 1e-3)
    final_lr = trial.suggest_loguniform('final_lr', 1e-5, 1e-1)
    weight_decay = trial.suggest_loguniform('weight_decay', 1e-6, 1e-2)
    optimizer_ft = adabound.AdaBound(model_ft.parameters(), lr=lr, \
                     final_lr=final_lr, betas=(0.9,0.999), gamma=0.001, weight_decay=weight_decay)
    return optimizer_ft
Beispiel #5
0
def set_optimizer_g(model_g, lr, w_decay=0.0005):
    params = model_g.get_learnable_params()
    param_list = []
    for k, p in params.items():
        param_list.append(p)

    optimizer = adabound.AdaBound(param_list, lr=lr, weight_decay=w_decay)
    return optimizer
Beispiel #6
0
def set_optimizer(optim_type: str, net_params: Any, lr: float, amsgrad_bool: bool = True) -> Any:
    if optim_type == "Adam":
        return optim.Adam(net_params, lr=lr, amsgrad=amsgrad_bool)
    elif optim_type == "adabound":
        return adabound.AdaBound(net_params, lr=lr)
    else:
        print("ERROR in set_optimizer")
        sys.exit()
def get_optimizer(name, parameters, lr):
    """
    This function instantiates optimizers given model parameters and various hyperparameters
    :param name: name of the optimizer to choose from
    :param parameters: all trainable model parameters
    :param lr: learning rate
    :return: optimizer object
    """
    if name == 'sgd':
        # TODO: test momentum and weight_decay
        # 1e-07 decay?  # weight_decay=1e-6
        return torch.optim.SGD(
            parameters, lr=lr, momentum=0.9, nesterov=True
        )  # bad results: weight_decay=1e-07, momentum=0.9, nesterov=True
        # return torch.optim.SGD(parameters, lr=lr,weight_decay=1e-5, momentum=0.9, nesterov=True)  # bad results: weight_decay=1e-07, momentum=0.9, nesterov=True

    elif name == "openai_adam":
        # This optimizer is from: https://github.com/huggingface/pytorch-openai-transformer-lm
        optimizer_openai = OpenAIAdam(
            parameters,
            lr=6.25e-5,
            schedule='warmup_linear',
            warmup=0.002,
            t_total=3,  # TODO: not sure what this actually represents
            b1=0.9,
            b2=0.999,
            e=1e-8,
            l2=0.01,
            vector_l2=True,
            max_grad_norm=1)

        return optimizer_openai
    elif name == 'nadam':
        return NAdam(parameters, lr=lr)
    elif name == 'asgd':
        return torch.optim.ASGD(parameters, lr=lr)
    elif name in ['adagrad', 'myadagrad']:
        # use new adagrad to allow for init accumulator value
        return MyAdagrad(parameters, lr=lr, init_accu_value=0.1)
    elif name == 'adam':
        # return torch.optim.Adam(parameters, betas=(0.9, 0.98), lr=lr, eps=1e-9)  # TODO: set amsgrad=True
        return torch.optim.Adam(parameters)  # use default settings
    elif name == 'adamax':
        return torch.optim.Adamax(parameters, lr=lr)
    elif name == "noopt_nadam":
        return NAdam(parameters, lr=0, betas=(0.9, 0.98), eps=1e-9)
    elif name == "noopt_adam":
        # this comes from http://nlp.seas.harvard.edu/2018/04/03/attention.html
        # but with a modification of using a zero_grad function in the class
        return NoamOpt(
            360, 1, 200,
            torch.optim.Adam(parameters, lr=0, betas=(0.9, 0.98), eps=1e-9))
    elif name == "adabound":
        return adabound.AdaBound(
            parameters, lr=1e-3,
            final_lr=lr)  # lr=1e-3, final_lr= 0.1 by default
    else:
        raise Exception("Unsupported optimizer: {}".format(name))
Beispiel #8
0
def get_optimizer(args, model):
    if args.optimizer == 'sgd':
        optimizer = optim.SGD(model.parameters(),
                              lr=args.base_lr,
                              momentum=args.momentum,
                              weight_decay=args.wd)
    elif args.optimizer == 'nag':
        optimizer = optim.SGD(model.parameters(),
                              lr=args.base_lr,
                              momentum=args.momentum,
                              weight_decay=args.wd,
                              nesterov=True)
    elif args.optimizer == 'adam':
        optimizer = optim.Adam(model.parameters(),
                               lr=args.base_lr,
                               weight_decay=args.wd)
    elif args.optimizer == 'amsgrad':
        optimizer = optim.Adam(model.parameters(),
                               lr=args.base_lr,
                               weight_decay=args.wd,
                               amsgrad=True)
    elif args.optimizer == 'rmsprop':
        optimizer = optim.RMSprop(model.parameters(),
                                  lr=args.base_lr,
                                  momentum=args.momentum,
                                  weight_decay=args.wd)
    elif args.optimizer == 'adabound':
        optimizer = adabound.AdaBound(model.parameters(),
                                      lr=args.base_lr,
                                      weight_decay=args.wd,
                                      final_lr=args.final_lr)
    elif args.optimizer == 'amsbound':
        optimizer = adabound.AdaBound(model.parameters(),
                                      lr=args.base_lr,
                                      weight_decay=args.wd,
                                      final_lr=args.final_lr,
                                      amsbound=True)
    else:
        raise 'unknown optimizer'

    return optimizer
Beispiel #9
0
    def __init__(self):
        self.eval_net, self.target_net = Net(), Net()

        self.learn_step_counter = 0  # for target updating
        self.memory_counter = 0  # for storing memory
        self.memory = np.zeros(
            (MEMORY_CAPACITY, N_STATES * 2 + 2))  # initialize memory
        # self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=LR)
        self.optimizer = adabound.AdaBound(self.eval_net.parameters(),
                                           lr=LR,
                                           final_lr=0.01)
        self.loss_func = nn.MSELoss()
Beispiel #10
0
def make_optimizer(args, targets):
    # optimizer = optim.Adam(targets.parameters(), lr=args.lr, weight_decay=args.weight_decay)
    if args.optimizer == 'AdaBound':
        optimizer = adabound.AdaBound(targets.parameters(),
                                      lr=args.lr,
                                      final_lr=0.1)
    elif args.optimizer == 'AMSGrad':
        optimizer = optim.Adam(targets.parameters(),
                               lr=args.lr,
                               weight_decay=args.weight_decay,
                               amsgrad=True)
    elif args.optimizer == 'AMSBound':
        optimizer = adabound.AdaBound(targets.parameters(),
                                      lr=args.lr,
                                      final_lr=0.1,
                                      amsbound=True)
    else:
        optimizer = optim.Adam(targets.parameters(),
                               lr=args.lr,
                               weight_decay=args.weight_decay)

    return optimizer
Beispiel #11
0
def get_optimizer(model, args):
    parameters = []
    for name, param in model.named_parameters():

        # bias weight_decay zero
        # bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')
        # others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')
        # parameters = [{'parameters': bias_list, 'weight_decay': 0},
        #               {'parameters': others_list}]

        # trick => custom layer params learning_rate to enlarge
        if 'fc' in name or 'class' in name or 'last_linear' in name or 'ca' in name or 'sa' in name:
            # trick => bias params do not use weight_decay
            if name[-4:] == 'bias':
                parameters.append({'params': param, 'lr': args.lr * args.lr_times, 'weight_decay': 0.0})
            else:
                parameters.append({'params': param, 'lr': args.lr * args.lr_times})
        else:
            if name[:-4] == 'bias':
                parameters.append({'params': param, 'lr': args.lr, 'weight_decay':0.0})
            else:
                parameters.append({'params': param, 'lr': args.lr})

    if args.optimizer == 'sgd':
        return torch.optim.SGD(parameters,
                            # model.parameters(),
                               args.lr,
                               momentum=args.momentum, nesterov=args.nesterov,
                               weight_decay=args.weight_decay)
    elif args.optimizer == 'rmsprop':
        return torch.optim.RMSprop(parameters,
                                # model.parameters(),
                                   args.lr,
                                   alpha=args.alpha,
                                   weight_decay=args.weight_decay)
    elif args.optimizer == 'adam':
        return torch.optim.Adam(parameters,
                                # model.parameters(),
                                args.lr,
                                betas=(args.beta1, args.beta2),
                                weight_decay=args.weight_decay)
    elif args.optimizer == 'AdaBound':
        return adabound.AdaBound(parameters,
                                # model.parameters(),
                                lr=args.lr, final_lr=args.final_lr)
    elif args.optimizer == 'radam':
        return RAdam(parameters, lr=args.lr, betas=(args.beta1, args.beta2),
                          weight_decay=args.weight_decay)

    else:
        raise NotImplementedError
Beispiel #12
0
def get_optimizer(config: Config, model: nn.Module):
    params = model.parameters()
    if config.optimizer.lower() == "sgd":
        print(colored("Using SGD: lr is: {}, L2 regularization is: {}".format(config.learning_rate, config.l2), 'yellow'))
        return optim.SGD(params, lr=config.learning_rate, weight_decay=float(config.l2))
    elif config.optimizer.lower() == "adam":
        print(colored("Using Adam", 'yellow'))
        return optim.Adam(params)
    elif config.optimizer.lower() == "adabound":
        print(colored("Using adabound: lr is: {}, final lr is: {}".format(0.001, 0.1), 'yellow'))
        return adabound.AdaBound(params, lr=1e-3, final_lr=0.1)
    else:
        print("Illegal optimizer: {}".format(config.optimizer))
        exit(1)
Beispiel #13
0
    def _load_optimizer(self):
        print('loading optimizer...')

        import torch.optim as optim

        if self.args.optimizer == 'adadelta':
            self.optimizer = optim.Adadelta(self.policies,
                                            lr=self.args.lr,
                                            weight_decay=self.args.wd)
        elif self.args.optimizer == 'adagrad':
            self.optimizer = optim.Adagrad(self.policies,
                                           lr=self.args.lr,
                                           weight_decay=self.args.wd)
        elif self.args.optimizer == 'adam':
            self.optimizer = optim.Adam(self.policies,
                                        lr=self.args.lr,
                                        weight_decay=self.args.wd)
        elif self.args.optimizer == 'rmsprop':
            self.optimizer = optim.RMSprop(self.policies,
                                           lr=self.args.lr,
                                           momentum=self.args.momentum,
                                           weight_decay=self.args.wd)
        elif self.args.optimizer == 'sgd':
            self.optimizer = optim.SGD(self.policies,
                                       lr=self.args.lr,
                                       momentum=self.args.momentum,
                                       dampening=0,
                                       nesterov=self.args.nesterov,
                                       weight_decay=self.args.wd)
        elif self.args.optimizer == 'adabound':
            import adabound
            self.optimizer = adabound.AdaBound(self.policies,
                                               lr=self.args.lr,
                                               final_lr=self.args.final_lr)

        if self.args.scheduler == 'step_lr':
            self.scheduler = optim.lr_scheduler.StepLR(
                self.optimizer,
                step_size=self.args.step_size,
                gamma=0.2,
                last_epoch=-1)
        elif self.args.scheduler == 'multi_step_lr':
            self.scheduler = optim.lr_scheduler.MultiStepLR(
                self.optimizer,
                milestones=self.args.milestones,
                gamma=0.2,
                last_epoch=-1)

        print('optimizer load finished!')
Beispiel #14
0
def get_optimizer(lr):
    if args.optim=='adam':
        args.clearmomentum=True
        return torch.optim.Adam(model.parameters(),lr=lr)
    elif args.optim=='sgd':
        args.clearmomentum=True
        return torch.optim.SGD(model.parameters(),lr=lr)
    elif args.optim=='sgdm':
        args.clearmomentum=False
        return torch.optim.SGD(model.parameters(),lr=lr,momentum=0.85)
    elif args.optim=='adabound':
        import adabound
        args.clearmomentum=False
        return adabound.AdaBound(model.parameters(),lr=lr)
    return None
Beispiel #15
0
def Start_Train_Local(args):
    # To build the net for localization
    args.model_choose = 'Localization_ResVNet'
    model_local = Build_Net(args)
    # To init the weight in net
    model_local = weight_init(model_local)


    print("Start to load the SegThor Training Data for Localization")
    train_local_set = DataLoader_SegThor.SegThorDatasetLocalization(
        dataset_folder = args.data_folder, phase = 'train', zoom_size = [256,256,256])
    train_local_loader = DataLoader(train_local_set, batch_size = args.train_batch_size, shuffle = True, num_workers = 1)
    print("Training Data Numbers: ", len(train_local_loader))

    print("Start to load the SegThor Validation Data for Localization")
    valid_local_set = DataLoader_SegThor.SegThorDatasetLocalization(
        args.data_folder, phase = 'valid', zoom_size = [256, 256, 256])
    valid_local_loader = DataLoader(valid_local_set, batch_size = args.valid_batch_size, shuffle = False, num_workers = 1)
    print("Valid Data Numbers: ", len(valid_local_loader))

    # Define the Optimizer
    if args.optimizer == 'SGD':
        optimizer = optim.SGD(model_local.parameters(), lr = args.lr, momentum = args.momentum)
    elif args.optimizer == 'Adam':
        optimizer = optim.Adam(model_local.parameters(), lr = args.lr, betas=(args.beta1, args.beta2), eps=1e-08, weight_decay = 0, amsgrad = False)
    elif args.optimizer == 'RmsProp':
        optimizer = optim.RMSprop(model_local.parameters(), weight_decay = args.weight_decay)
    elif args.optimizer == 'AdaBound':
        optimizer = adabound.AdaBound(params = model_local.parameters(), lr = args.lr, final_lr = 0.1)

    # Start to train
    model_local.train()
    for epoch in range(1, args.max_epoch + 1):
        Train_Local(args, epoch, model_local, optimizer, train_local_loader)
        if epoch % 10 == 0:
            model_local.eval()
            Valid_Local(args, model, valid_local_loader)
            model_local.train()
        if int(epoch % 50) == 0:
            torch.save(model_triplet.state_dict(), '/mnt/lustrenew/zhangzhizuo/Model/{}__{}__{}__{}.pkl'.format(args.model_choose, time.strftime('%Y.%m.%d.%H.%I.%M.%S',time.localtime(time.time())), epoch, 'Local'))

    folder = '/mnt/lustre/zhangzhizuo/Data/'
    for file in os.listdir(folder):
        np.savez_compressed(os.path.join(save_path, seriesUID + '.npz'), origin=origin, spacing_old=spacing,
                        spacing_new=resolution,
                        image=re_img.astype(np.float16), mask=seg, seriesUID=seriesUID, direction=isflip, pad=pad,
                        bbox_old=originalshape, bbox_new=re_img.shape)
    return
def make_optimizer(model: object, optimizer_cfg: object) -> object:
    if optimizer_cfg.type == 'sgd':
        LOG.info('\n Optimizer: SGD')
        return optim.SGD(model.parameters(),
                         lr=optimizer_cfg.lr,
                         momentum=optimizer_cfg.momentum,
                         weight_decay=optimizer_cfg.decay)
    elif optimizer_cfg.type == 'adam':
        LOG.info('\n Optimizer: Adam')
        return optim.Adam(model.parameters(),
                          lr=optimizer_cfg.lr,
                          betas=(optimizer_cfg.beta1, optimizer_cfg.beta2),
                          eps=optimizer_cfg.eps)
    elif optimizer_cfg.type == 'amsgrad':
        LOG.info('\n Optimizer: AMSGrad')
        return optim.Adam(model.parameters(),
                          lr=optimizer_cfg.lr,
                          betas=(optimizer_cfg.beta1, optimizer_cfg.beta2),
                          eps=optimizer_cfg.eps,
                          amsgrad=True)
    elif optimizer_cfg.type == 'rmsprop':
        LOG.info('\n Optimizer: RMSProp')
        return optim.RMSprop(model.parameters(),
                             lr=optimizer_cfg.lr,
                             alpha=optimizer_cfg.alpha,
                             eps=optimizer_cfg.eps)
    elif optimizer_cfg.type == "adadelta":
        LOG.info('\n Optimizer: Adadelta')
        return optim.Adadelta(model.parameters(),
                              lr=optimizer_cfg.lr,
                              rho=optimizer_cfg.rho,
                              eps=optimizer_cfg.eps,
                              weight_decay=optimizer_cfg.decay)
    elif optimizer_cfg.type == "adagrad":
        LOG.info('\n Optimizer: Adagrad')
        return optim.Adagrad(
            model.parameters(),
            lr=optimizer_cfg.lr,
            lr_decay=optimizer_cfg.lr_decay,
            weight_decay=optimizer_cfg.decay,
            initial_accumulator_value=optimizer_cfg.initial_accumulator_value)
    elif args.optimizer == "adabound":
        LOG.info('\n Optimizer: AdaBound')
        return adabound.AdaBound(model.parameters(),
                                 lr=optimizer_cfg.lr,
                                 final_lr=optimizer_cfg.flr)
    else:
        raise NotImplementedError('This optimizer is not supported.')
Beispiel #17
0
def get_optimizer(model, args):
    parameters = []
    for name, param in model.named_parameters():
        if 'fc' in name or 'class' in name or 'last_linear' in name or 'ca' in name or 'sa' in name:
            parameters.append({
                'params': param,
                'lr': args.lr * args.lr_fc_times
            })
        else:
            parameters.append({'params': param, 'lr': args.lr})

    if args.optimizer == 'sgd':
        return torch.optim.SGD(
            parameters,
            # model.parameters(),
            args.lr,
            momentum=args.momentum,
            nesterov=args.nesterov,
            weight_decay=args.weight_decay)
    elif args.optimizer == 'rmsprop':
        return torch.optim.RMSprop(
            parameters,
            # model.parameters(),
            args.lr,
            alpha=args.alpha,
            weight_decay=args.weight_decay)
    elif args.optimizer == 'adam':
        return torch.optim.Adam(
            parameters,
            # model.parameters(),
            args.lr,
            betas=(args.beta1, args.beta2),
            weight_decay=args.weight_decay)
    elif args.optimizer == 'AdaBound':
        return adabound.AdaBound(
            parameters,
            # model.parameters(),
            lr=args.lr,
            final_lr=args.final_lr)
    elif args.optimizer == 'radam':
        return RAdam(parameters,
                     lr=args.lr,
                     betas=(args.beta1, args.beta2),
                     weight_decay=args.weight_decay)

    else:
        raise NotImplementedError
Beispiel #18
0
def Start_Train_Multi(args):
    args.model_choose = 'ResVNet_Triplet'
    model_triplet = Build_Net(args)
    model_triplet = kaiming_normal(model_triplet)
    #model.apply(weights_init)
    # Loading Data in the Dataset
    print("Start to load the SegThor Trainning Data for Triplet!")

    args.data_folder = "/mnt/lustre/zhangzhizuo/Data/SegThor"
    data_folder = args.data_folder
    train_set = SegThorDatasetTriplet(dataset_folder = data_folder, phase = 'train', crop_size = args.crop_size_triplet)
    train_loader = DataLoader(train_set, batch_size = args.train_batch_size, shuffle = True, num_workers = 1)
    print("Training Data Numbers: ", len(train_loader.dataset))


    print("Start to load the SegThor Validation Data")
    valid_set = SegThorDatasetTriplet(data_folder, phase = 'valid', crop_size = args.crop_size_triplet)
    valid_loader = DataLoader(valid_set, batch_size = args.valid_batch_size, shuffle = False, num_workers = 1)
    print("Valid Data Numbers: ", len(valid_loader.dataset))

    #Build the model for Heart training


    # Define the Optimizer
    if args.optimizer == 'SGD':
        optimizer = optim.SGD(model_triplet.parameters(), lr = args.lr, momentum = args.momentum)
    elif args.optimizer == 'Adam':
        optimizer = optim.Adam(model_triplet.parameters(), lr = args.lr, betas=(args.beta1, args.beta2), eps=1e-08, weight_decay = 0, amsgrad = False)
    elif args.optimizer == 'RmsProp':
        optimizer = optim.RMSprop(model_triplet.parameters(), weight_decay = args.weight_decay)
    elif args.optimizer == 'AdaBound':
        optimizer = adabound.AdaBound(params = model_triplet.parameters(), lr = args.lr, final_lr = 0.1)


    model_triplet.train()

    for epoch in (range(1, args.max_epoch + 1)):
        Train_Triplet(args, epoch, model_triplet, optimizer, train_loader, total_classes = 4, target_class = -1)
        if int(epoch%5) == 0:
            model_triplet.eval()
            Valid_Triplet(args, model_triplet, valid_loader, target_class = -1, total_classes = 4)
            model_triplet.train()
        if int(epoch % 50) == 0:
            torch.save(model_triplet.state_dict(), '/mnt/lustrenew/zhangzhizuo/Model/{}__{}__{}__{}.pkl'.format(args.model_choose, time.strftime('%Y.%m.%d.%H.%I.%M.%S',time.localtime(time.time())), epoch, 'Triplet'))

    return 
Beispiel #19
0
def get_optim(params, config):
    if config.type == 'adam':
        optimizer = torch.optim.Adam(params, lr=config.lr, betas=config.betas)
    elif config.type == 'adabound':
        import adabound
        optimizer = adabound.AdaBound(params,
                                      lr=config.lr,
                                      final_lr=config.final_lr)
    elif config.type == 'sgd':
        optimizer = torch.optim.SGD(params,
                                    lr=config.lr,
                                    momentum=config.momentum,
                                    weight_decay=config.weight_decay,
                                    nesterov=config.nesterov)
    else:
        raise Exception("Optimizer not supported: %s" % config.optimizer)
    return optimizer
Beispiel #20
0
def create_model(workspace, dataset, num_classes, model_name, freeze, dropout,
                 prob, lr, momentum, step_size, gamma, criterion_name,
                 optimizer_name, device, dataparallel, gpus):
    if model_name == 'ResNet50' or model_name == 'ResNeXt50' or model_name == 'Inception_v3' or model_name == 'DenseNet161':
        model = recall_model(model_name)
        model = edit_model(model_name, model, dropout, prob, freeze,
                           num_classes)
        transform = create_transform(model_name)
    elif len(model_name) == 2:
        transform = []
        model1 = recall_model(model_name[0])
        model1 = edit_model(model_name[0], model1, dropout, prob, freeze, 1024)
        transform.append(create_transform(model_name[0]))
        model2 = recall_model(model_name[1])
        model2 = edit_model(model_name[1], model2, dropout, prob, freeze, 1024)
        transform.append(create_transform(model_name[1]))
        model = TwoInputsNet(model1, model2, num_classes)

    if dataparallel:
        model = torch.nn.DataParallel(model, device_ids=gpus)

    if optimizer_name == 'SGD':
        optimizer_conv = optim.SGD(model.parameters(),
                                   lr=lr,
                                   momentum=momentum)
    elif optimizer_name == 'AdamW':
        optimizer_conv = optim.AdamW(model.parameters(), lr=lr)
    elif optimizer_name == 'Adam':
        optimizer_conv = optim.Adam(model.parameters(), lr=lr)
    elif optimizer_name == 'AdaBound':
        optimizer_conv = adabound.AdaBound(model.parameters(), lr=lr)

    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv,
                                           step_size=step_size,
                                           gamma=gamma)

    if criterion_name == 'Cross Entropy':
        criterion = nn.CrossEntropyLoss()
    elif criterion_name == 'Focal':
        criterion = FocalLoss()

    return model, optimizer_conv, criterion, exp_lr_scheduler, transform
Beispiel #21
0
    def configure_optimizers(self):
        params = self.hparams
        if params.optimizer == 'sgd':
            optimizer = torch_optim.SGD(self.parameters(),
                                        lr=params.lr,
                                        weight_decay=params.weight_decay,
                                        momentum=0.9)
        elif params.optimizer == 'adam':
            optimizer = torch_optim.Adam(self.parameters(),
                                         lr=params.lr,
                                         weight_decay=params.weight_decay)
        elif params.optimizer == 'adabound':
            import adabound
            optimizer = adabound.AdaBound(self.parameters(),
                                          lr=params.lr,
                                          final_lr=params.lr * 10,
                                          weight_decay=params.weight_decay)
        else:
            raise NotImplementedError()

        if params.sched == 'plat':
            sched = lr_sched.ReduceLROnPlateau(optimizer,
                                               patience=0,
                                               factor=params.sched_factor,
                                               verbose=True,
                                               min_lr=0.0004)
            return [optimizer], [sched]
        elif self.hparams.sched == 'sgdr':
            sched = lr_sched.CosineAnnealingWarmRestarts(
                optimizer, self.hparams.sched_factor)
            return [optimizer], [sched]
        elif self.hparams.sched == 'step':
            sched = lr_sched.MultiStepLR(optimizer,
                                         milestones=[3, 6],
                                         gamma=0.3)
            return [optimizer], [sched]
        elif params.sched == 'none':
            return optimizer
        else:
            raise NotImplementedError()
def get_optimizer(model, optim_str):
    torch_optim_list = ['SGD', 'Adam']
    possible_optim_list = torch_optim_list + ['RAdam', 'AdaBound']

    optim_args = optim_str.split('/')
    name = optim_args[0]
    assert name in possible_optim_list, '{} not implemented.'.format(name)

    args_dict = {
        e.split('=')[0]: eval(e.split('=')[1])
        for e in optim_args[1:]
    }

    model_params = model.parameters()
    if name in torch_optim_list:
        optimizer = optim.__dict__[name](model_params, **args_dict)
    elif name == 'AdaBound':
        optimizer = adabound.AdaBound(model_params, **args_dict)
    elif name == 'RAdam':
        optimizer = RAdam(model_params, **args_dict)

    return optimizer
def optuna_optimizer(trial, model, args):
    """A function for optimizing optimizers using Optuna.

    Arguments:
        trial:  Optuna related. Details: https://optuna.readthedocs.io/en/latest/
        model:  a model class
        args:   argparse arguments.

    Returns:
        optimizer:  optimizer of choice. Optuna is define-by-run and it optimizes
                    for the optimizer with parameters if you define like below.

    """

    optimizer_names = ['adam', 'momentum', 'adabound']
    optimizer_name = trial.suggest_categorical('optim_type', optimizer_names)
    weight_decay = trial.suggest_loguniform('weight_decay', 1e-8, 1e-3)
    lr = trial.suggest_loguniform('lr', 1e-5, 1e-1)

    if optimizer_name == optimizer_names[0]:
        optimizer = torch.optim.Adam(model.parameters(),
                                     lr=lr,
                                     weight_decay=weight_decay,
                                     amsgrad=True)
    elif optimizer_name == optimizer_names[1]:
        optimizer = torch.optim.SGD(model.parameters(),
                                    lr=lr,
                                    momentum=0.9,
                                    weight_decay=weight_decay)
    elif optimizer_name == optimizer_names[2]:
        optimizer = adabound.AdaBound(model.parameters(),
                                      lr=lr,
                                      weight_decay=weight_decay)
    else:
        raise (
            "The optimizer type not defined. Double check the configuration file."
        )

    return optimizer
Beispiel #24
0
def create_optimizer(params, mode, *args, **kwargs):
    if mode == 'SGD':
        opt = optim.SGD(params, *args, momentum=0., **kwargs)
    elif mode.startswith('nesterov'):
        momentum = float(mode[len('nesterov'):])
        opt = optim.SGD(params,
                        *args,
                        momentum=momentum,
                        nesterov=True,
                        **kwargs)
    elif mode.lower() == 'adam':
        betas = kwargs.pop('betas', (.9, .999))
        opt = optim.Adam(params,
                         *args,
                         betas=betas,
                         amsgrad=True,
                         weight_decay=1e-4,
                         **kwargs)
    elif mode.lower() == 'adam_hyp2':
        betas = kwargs.pop('betas', (.5, .99))
        opt = optim.Adam(params, *args, betas=betas, amsgrad=True, **kwargs)
    elif mode.lower() == 'adam_hyp3':
        betas = kwargs.pop('betas', (0., .99))
        opt = optim.Adam(params, *args, betas=betas, amsgrad=True, **kwargs)
    elif mode.lower() == 'adam_sparse':
        betas = kwargs.pop('betas', (.9, .999))
        opt = optim.SparseAdam(params, *args, weight_decay=1e-4, betas=betas)
    elif mode.lower() == 'adam_sparse_hyp2':
        betas = kwargs.pop('betas', (.5, .99))
        opt = optim.SparseAdam(params, *args, betas=betas)
    elif mode.lower() == 'adam_sparse_hyp3':
        betas = kwargs.pop('betas', (.0, .99))
        opt = optim.SparseAdam(params, *args, betas=betas)
    elif mode.lower() == 'adabound':
        opt = adabound.AdaBound(params, *args, final_lr=0.1)
    else:
        raise NotImplementedError()
    return opt
Beispiel #25
0
def get_optimizer(model, args):

    if args.optimizer == 'sgd':
        return torch.optim.SGD(
            model.parameters(),
            # model.parameters(),
            args.lr,
            momentum=args.momentum,
            nesterov=args.nesterov,
            weight_decay=args.weight_decay)
    elif args.optimizer == 'rmsprop':
        return torch.optim.RMSprop(
            model.parameters(),
            # model.parameters(),
            args.lr,
            alpha=args.alpha,
            weight_decay=args.weight_decay)
    elif args.optimizer == 'adam':
        return torch.optim.Adam(
            model.parameters(),
            # model.parameters(),
            args.lr,
            betas=(args.beta1, args.beta2),
            weight_decay=args.weight_decay)
    elif args.optimizer == 'AdaBound':
        return adabound.AdaBound(
            model.parameters(),
            # model.parameters(),
            lr=args.lr,
            final_lr=args.final_lr)
    elif args.optimizer == 'radam':
        return RAdam(model.parameters(),
                     lr=args.lr,
                     betas=(args.beta1, args.beta2),
                     weight_decay=args.weight_decay)

    else:
        raise NotImplementedError
Beispiel #26
0
    return l_list, t_list


if __name__ == "__main__":

    Option = TrainOptions()
    args = Option.parse()
    Option.print_opt()
    model = IAQA_model(args)
    device = torch.device(
        "cuda" if args.gpu and torch.cuda.is_available() else "cpu")
    model = model.to(device)
    model.apply(inplace_relu)
    #optimizer = torch.optim.Adam(model.parameters(),lr = args.lr, weight_decay = 1e-3)
    #optimizer = torch.optim.SGD(model.parameters(),lr = args.lr,momentum = 0.9,weight_decay=5e-4)
    optimizer = adabound.AdaBound(model.parameters(), lr=args.lr,
                                  final_lr=0.1)  #Adabound: Adaboost+ SGD
    criterion = RegressionLoss()
    tensorboard_dir = os.path.join(args.runs, args.name)
    writer = SummaryWriter(tensorboard_dir)
    checkpoint_path = os.path.join(args.checkpoints_dir, args.name)
    if not os.path.exists(checkpoint_path):
        os.makedirs(checkpoint_path)
    checkpoints = os.path.join(checkpoint_path, '{net}-{epoch}-{type}.pth')

    best_criterion = -1
    lr = args.lr
    train_loader, val_loader = get_train_dataloader(args)
    test_loader = get_test_dataloader(args)

    for epoch in range(1, args.epochs + 1):
Beispiel #27
0
            for inputs, labels in self.dataloaders['valid']:
                inputs = inputs.type(self.input_type)
                self.writer.add_graph(self.model, inputs)
                break
            print('Model structure drawing is completed')


# model = Net(weight='resnet152_101.pth')
model = pretrainedmodels.__dict__['senet154'](num_classes=1000,
                                              pretrained='imagenet')
model.last_linear = nn.Linear(model.last_linear.in_features, 13051)
# self.model.load_state_dict(torch.load('best.pth'))
criterion = nn.CrossEntropyLoss()
optimizer = adabound.AdaBound(model.parameters(),
                              lr=1e-2,
                              final_lr=0.1,
                              weight_decay=1e-7,
                              amsbound=True)
# optimizer = optim.Adam(model.parameters(), lr=1e-3)
# scheduler = lr_scheduler.ReduceLROnPlateau(optimizer)
S = Solution(
    model,
    criterion,
    optimizer,
    './cars_data',
    scheduler=None,
    epochs=100,
    batch_size=8,
    thread_size=num_cpu,
    show_interval=20,
    valid_interval=2000,
Beispiel #28
0
    train_fields = [('id', None), ('sentiment', LABEL), ('review', TEXT)]
    test_fields = [('id', None), ('review', TEXT)]
    x_var = 'review'
    y_vars = ['sentiment']
    x_test_var = 'review'

    nonbertdata = NonBertData(train_pth, train_fields, test_pth, test_fields,
                              TEXT, LABEL, x_var, y_vars, x_test_var, None)
    train_iter, test_iter = nonbertdata.getdata()

    model = MyBert(len(TEXT.vocab), TEXT.vocab.vectors)
    # a=list(model.parameters())
    # optimizer = torch.optim.Adam(model.parameters(), lr=2e-4)
    ######################################################
    import adabound
    optimizer = adabound.AdaBound(model.parameters(), lr=2e-5, final_lr=0.1)
    #######################################################
    train_test = True

    modelname = "./models_pkl/Bert_4layers_MODEL.pkl"
    if train_test:
        trainer = Trainer(model,
                          train_iter,
                          optimizer,
                          modelname,
                          use_GPU=True)
        trainer.train(1000, pretrain_pth=modelname, padding_idx=1)
    else:
        tester = Tester(model, test_iter, use_GPU=True)
        df = tester.test(modelname, padding_idx=1)
        data = pd.read_csv(test_pth, header=0, delimiter='\t')
Beispiel #29
0
        model_params['word_embedding.weight'][idx] = torch.FloatTensor(word_embedding.wv[word_embedding.wv.index2entity[idx-3]])

    k_means_weight = np.load('%s/%s.k_means.npy' % (conf.target_path, conf.data_name))
    model_params['transform_T.weight'] = torch.FloatTensor(k_means_weight.transpose()) # (aspect_dimesion, word_dimension)
    
    model.load_state_dict(model_params)
    '''
    model.load_state_dict(
        torch.load('%s/train_%s_abae_id_adabound.mod' %
                   (conf.model_path, conf.data_name)))

    model.cuda()
    #optimizer = torch.optim.Adam(model.parameters(), lr=conf.learning_rate)
    import adabound
    optimizer = adabound.AdaBound(model.parameters(),
                                  lr=conf.learning_rate,
                                  final_lr=0.1)

    ########################### FIRST TRAINING #####################################
    check_dir('%s/train_%s_abae_id_x.log' % (conf.out_path, conf.data_name))
    log = Logging('%s/train_%s_abae_id_adabound.log' %
                  (conf.out_path, conf.data_name))
    train_model_path = '%s/train_%s_abae_id_adabound.mod' % (conf.out_path,
                                                             conf.data_name)

    # prepare data for the training stage
    train_dataset = data_utils.TrainData(train_data, train_review_embedding)
    val_dataset = data_utils.TrainData(val_data, val_review_embedding)
    test_dataset = data_utils.TrainData(test_data, test_review_embedding)

    train_batch_sampler = data.BatchSampler(data.RandomSampler(
Beispiel #30
0
def engine(
    ckpt_loc: str='ckpt-default',
    device_id: int=1,
    batch_size: int=128,
    use_cuda: bool=True,
    num_embeddings: int=8,
    casual_hidden_sizes: t.Iterable=[16, 32],
    num_botnec_feat: int=72,
    num_k_feat: int=24,
    num_dense_layers: int=20,
    num_out_feat: int=268,
    num_z_feat: int=10,
    activation: str='elu',
    LR: float=1e-3,
    final_lr: float=0.1,
    init_beta: float=0.,
    final_beta: float=1.,
    num_annealing_steps: int=2000,
    # beta: float=0.25,
    grad_clip=3.0,
    num_epochs: int=5,
    num_p=1
):
    beta_step_len = (final_beta - init_beta) / num_annealing_steps
    model = GraphInf(
        num_in_feat=43,
        num_c_feat=8,
        num_embeddings=num_embeddings,
        casual_hidden_sizes=casual_hidden_sizes,
        num_botnec_feat=num_botnec_feat,  # 16 x 4
        num_k_feat=num_k_feat,  # 16
        num_dense_layers=num_dense_layers,
        num_out_feat=num_out_feat,
        num_z_feat=num_z_feat,
        activation=activation,
        use_cuda=use_cuda
    )

    optim = adabound.AdaBound(
        model.parameters(),
        lr=LR,
        final_lr=final_lr
    )
    device = torch.device(f'cuda:{device_id}')
    model = model.to(device)
    model.train()
    save_loc = path.join(
        path.dirname(__file__),
        'ckpt',
        ckpt_loc
    )
    events_loc = path.join(save_loc, 'events')
    if not path.exists(events_loc):
        makedirs(events_loc)
    try:
        with SummaryWriter(events_loc) as writer:
            step = 0
            has_nan_or_inf = False
            train_loader = ComLoader(
                original_scaffolds_file='data-center/train.smi',
                num_workers=num_p,
                batch_size=batch_size
            )
            test_loader = ComLoader(
                original_scaffolds_file='data-center/test.smi',
                num_workers=num_p,
                batch_size=batch_size
            )

            for epoch in ipb(range(num_epochs), desc='epochs'):
                iter_train = iter(train_loader)
                iter_test = iter(test_loader)
                try:
                    if has_nan_or_inf:
                        break

                    for i in ipb(range(
                        train_loader.num_id_block +
                        train_loader.num_id_block // 200
                    ), desc='iteration'):
                        if step > 0 and step % 200 == 0:
                            batch = next(iter_test)
                        else:
                            batch = next(iter_train)

                        (
                            block,
                            nums_nodes,
                            nums_edges,
                            seg_ids,
                            bond_info_all,
                            nodes_o,
                            nodes_c
                        ) = batch

                        beta = min(init_beta + beta_step_len * step, 1)
                        num_N = sum(nums_nodes)
                        num_E = sum(nums_edges)

                        values = torch.ones(num_E)

                        s_adj = torch.sparse_coo_tensor(
                            bond_info_all.T,
                            values,
                            torch.Size([num_N, num_N])
                        ).to(device)

                        s_nfeat = torch.from_numpy(nodes_o).to(device)
                        c_nfeat = torch.from_numpy(nodes_c).to(device)

                        x_recon, mu1, logvar1, mu2, logvar2 = (
                            model(s_nfeat, c_nfeat, s_adj)
                        )
                        seg_ids = torch.from_numpy(seg_ids)
                        optim.zero_grad()
                        MSE, KL = loss_func(
                            x_recon,
                            s_nfeat,
                            mu1,
                            logvar1,
                            mu2,
                            logvar2,
                            seg_ids
                        )

                        loss = MSE + beta * KL
                        if not (step > 0 and step % 200 == 0):
                            loss.backward()
                            torch.nn.utils.clip_grad_norm_(
                                model.parameters(),
                                grad_clip
                            )
                            optim.step()

                        # debug for Nan in recon loss
                        has_nan_or_inf = torch.cat(
                            [
                                torch.stack(
                                    (
                                        torch.isnan(params.grad).any(),
                                        torch.isinf(params.grad).any()
                                    ),
                                    dim=-1
                                ) for params in model.parameters()
                            ],
                            dim=-1
                        ).any()

                        if has_nan_or_inf:
                            torch.save(
                                model,
                                path.join(save_loc, f'broken_{epoch}.ckpt')
                            )
                            torch.save(
                                s_nfeat,
                                path.join(save_loc, f's_nfeat_{epoch}.pt')
                            )
                            torch.save(
                                c_nfeat,
                                path.join(save_loc, f'c_nfeat_{epoch}.pt')
                            )
                            torch.save(
                                s_adj.to_dense(),
                                path.join(save_loc, f's_adj_{epoch}.pt')
                            )
                            torch.save(
                                seg_ids,
                                path.join(save_loc, f'seg_ids_{epoch}.pt')
                            )
                            with open(
                                path.join(save_loc, 'batch.smi'), 'w'
                            ) as f:
                                for smiles in block:
                                    f.write(smiles + '\n')

                            break

                        if not (step > 0 and step % 200 == 0):
                            writer.add_scalar(
                                f'loss',
                                loss.cpu().item(),
                                step
                            )
                            writer.add_scalar(
                                f'recon_loss',
                                MSE.cpu().item(),
                                step
                            )
                            writer.add_scalar(
                                f'KL',
                                KL.cpu().item(),
                                step
                            )
                        else:
                            writer.add_scalar(
                                f'test_loss',
                                loss.cpu().item(),
                                step
                            )
                            writer.add_scalar(
                                f'test_recon_loss',
                                MSE.cpu().item(),
                                step
                            )
                            writer.add_scalar(
                                f'test_KL',
                                KL.cpu().item(),
                                step
                            )

                        step += 1

                    torch.save(
                        model,
                        path.join(save_loc, f'model_{epoch}.ckpt')
                    )
                except StopIteration:
                    continue

    except KeyboardInterrupt:
        torch.save(
            model,
            path.join(save_loc, f'model_{epoch}.ckpt')
        )