def train(config, ADMM, device, train_loader, criterion, optimizer, scheduler,
          epoch):
    config.model.train()

    ce_loss = None
    for batch_idx, (data, target) in enumerate(train_loader):

        # adjust learning rate
        if config.admm:
            admm.admm_adjust_learning_rate(optimizer, epoch, config)
        else:
            if scheduler is not None:
                scheduler.step()

        data, target = data.to(device), target.to(device)
        if config.gpu is not None:
            data = data.cuda(config.gpu, non_blocking=True)
            target = target.cuda(config.gpu, non_blocking=True)

        if config.mixup:
            data, target_a, target_b, lam = mixup_data(data, target,
                                                       config.alpha)

        optimizer.zero_grad()
        output = config.model(data)

        if config.mixup:
            ce_loss = mixup_criterion(criterion, output, target_a, target_b,
                                      lam, config.smooth)
        else:
            ce_loss = criterion(output, target, smooth=config.smooth)

        if config.admm:
            admm.admm_update(config, ADMM, device, train_loader, optimizer,
                             epoch, data, batch_idx)  # update Z and U
            ce_loss, admm_loss, mixed_loss = admm.append_admm_loss(
                config, ADMM, ce_loss)  # append admm losss

        if config.admm:
            mixed_loss.backward()
        else:
            ce_loss.backward()

        if config.masked_progressive:
            with torch.no_grad():
                for name, W in config.model.named_parameters():
                    if name in config.zero_masks:
                        W.grad *= config.zero_masks[name]

        if config.masked_retrain:
            with torch.no_grad():
                for name, W in config.model.named_parameters():
                    if name in config.masks:
                        W.grad *= config.masks[name]

        optimizer.step()
        if batch_idx % config.print_freq == 0:

            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), ce_loss.item()))
Beispiel #2
0
def train(train_loader, config, ADMM, criterion, optimizer, scheduler, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    config.model.train()

    end = time.time()
    for i, (input, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        # adjust learning rate
        if config.admm:
            admm.admm_adjust_learning_rate(optimizer, epoch, config)
        else:
            scheduler.step()

        input = input.cuda(config.gpu, non_blocking=True)
        target = target.cuda(config.gpu)
        data = input

        if config.mixup:
            input, target_a, target_b, lam = mixup_data(
                input, target, config.alpha)

        # compute output
        output = config.model(input)

        if config.mixup:
            ce_loss = mixup_criterion(criterion, output, target_a, target_b,
                                      lam, config.smooth)
        else:
            ce_loss = criterion(output, target, smooth=config.smooth)

        if config.admm:
            admm.admm_update(config, ADMM, device, train_loader, optimizer,
                             epoch, data, i)  # update Z and U
            ce_loss, admm_loss, mixed_loss = admm.append_admm_loss(
                config, ADMM, ce_loss)  # append admm losss

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(ce_loss.item(), input.size(0))
        top1.update(acc1[0], input.size(0))
        top5.update(acc5[0], input.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        if config.admm:
            mixed_loss.backward()
        else:
            ce_loss.backward()
        if config.masked_progressive:
            with torch.no_grad():
                for name, W in config.model.named_parameters():
                    if name in config.zero_masks:
                        W.grad *= config.zero_masks[name]
        if config.masked_retrain:
            with torch.no_grad():
                for name, W in config.model.named_parameters():
                    if name in config.masks:
                        W.grad *= config.masks[name]

        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % config.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
                      epoch,
                      i,
                      len(train_loader),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss=losses,
                      top1=top1,
                      top5=top5))
            print("cross_entropy loss: {}".format(ce_loss))
Beispiel #3
0
def train(hyp):
    # batch_time = AverageMeter()
    # data_time = AverageMeter()
    # losses = AverageMeter()

    cfg = opt.cfg
    data = opt.data
    epochs = opt.epochs  # 500200 batches at bs 64, 117263 images = 273 epochs
    batch_size = opt.batch_size
    accumulate = max(round(64 / batch_size), 1)  # accumulate n times before optimizer update (bs 64)
    weights = opt.weights  # initial training weights
    imgsz_min, imgsz_max, imgsz_test = opt.img_size  # img sizes (min, max, test)

    # Image Sizes
    gs = 32  # (pixels) grid size
    assert math.fmod(imgsz_min, gs) == 0, '--img-size %g must be a %g-multiple' % (imgsz_min, gs)
    opt.multi_scale |= imgsz_min != imgsz_max  # multi if different (min, max)
    if opt.multi_scale:
        if imgsz_min == imgsz_max:
            imgsz_min //= 1.5
            imgsz_max //= 0.667
        grid_min, grid_max = imgsz_min // gs, imgsz_max // gs
        imgsz_min, imgsz_max = int(grid_min * gs), int(grid_max * gs)
    img_size = imgsz_max  # initialize with max size

    # Configure run
    init_seeds()
    data_dict = parse_data_cfg(data)
    train_path = data_dict['train']
    test_path = data_dict['valid']
    nc = 1 if opt.single_cls else int(data_dict['classes'])  # number of classes
    hyp['cls'] *= nc / 80  # update coco-tuned hyp['cls'] to current dataset

    # Remove previous results
    for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
        os.remove(f)

    # Initialize model
    model = Darknet(cfg).to(device)

    # Optimizer

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in dict(model.named_parameters()).items():
        if '.bias' in k:
            pg2 += [v]  # biases
        elif 'Conv2d.weight' in k:
            pg1 += [v]  # apply weight_decay
        else:
            pg0 += [v]  # all else

    if opt.adam:
        # hyp['lr0'] *= 0.1  # reduce lr (i.e. SGD=5E-3, Adam=5E-4)
        optimizer = optim.Adam(pg0, lr=hyp['lr0'])
        # optimizer = AdaBound(pg0, lr=hyp['lr0'], final_lr=0.1)
    else:
        optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    print('Optimizer groups: %g .bias, %g Conv2d.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    start_epoch = 0
    best_fitness = 0.0
    # attempt_download(weights)

    
    if opt.freeze_layers:                                                                                                                                                            
        output_layer_indices = [idx - 1 for idx, module in enumerate(model.module_list) if isinstance(module, YOLOLayer)]                                                                                                                      
        freeze_layer_indices = [x for x in range(len(model.module_list)) if                                                                                                         
                                (x not in output_layer_indices) and                                                                                                               
                                (x - 1 not in output_layer_indices)]                                                                                                                 
        for idx in freeze_layer_indices:                                                                                                                                             
            for parameter in model.module_list[idx].parameters():                                                                                                                    
                parameter.requires_grad_(False)                                                                                                                                      


    # Mixed precision training https://github.com/NVIDIA/apex
    if mixed_precision:
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.95 + 0.05  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    scheduler.last_epoch = start_epoch - 1  # see link below
    # https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822

    # Plot lr schedule
    # y = []
    # for _ in range(epochs):
    #     scheduler.step()
    #     y.append(optimizer.param_groups[0]['lr'])
    # plt.plot(y, '.-', label='LambdaLR')
    # plt.xlabel('epoch')
    # plt.ylabel('LR')
    # plt.tight_layout()
    # plt.savefig('LR.png', dpi=300)

    # Dataset
    dataset = LoadImagesAndLabels(train_path, img_size, batch_size,
                                  augment=True,
                                  hyp=hyp,  # augmentation hyperparameters
                                  rect=opt.rect,  # rectangular training
                                  cache_images=opt.cache_images,
                                  single_cls=opt.single_cls)

    # Dataloader
    batch_size = min(batch_size, len(dataset))
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=batch_size,
                                             num_workers=nw,
                                             shuffle=not opt.rect,
                                             # Shuffle=True unless rectangular training is used
                                             pin_memory=True,
                                             collate_fn=dataset.collate_fn)

    # Testloader
    testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path, imgsz_test, batch_size,
                                                                 hyp=hyp,
                                                                 rect=True,
                                                                 cache_images=opt.cache_images,
                                                                 single_cls=opt.single_cls),
                                             batch_size=batch_size,
                                             num_workers=nw,
                                             pin_memory=True,
                                             collate_fn=dataset.collate_fn)

    initial_rho = opt.rho
    t0 = time.time()
    """====================="""
    """ multi-rho admm train"""
    """====================="""
    if opt.admm:
        opt.notest = True
        # possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
        chkpt = torch.load(weights, map_location=device)

        # load model
        try:
            # chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
            model.load_state_dict(chkpt['model'], strict=False)
        except Exception as e:
            s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
                "See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
            print(e)
            raise KeyError(s) from e

        del chkpt

        # Initialize distributed training
        if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
            dist.init_process_group(backend='nccl',  # 'distributed backend'
                                    init_method='tcp://127.0.0.1:9999',  # distributed training init method
                                    world_size=1,  # number of nodes for distributed training
                                    rank=0)  # distributed training node rank
            model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
            model.yolo_layers = model.module.yolo_layers  # move yolo layer indices to top level


        # Model parameters
        model.nc = nc  # attach number of classes to model
        model.hyp = hyp  # attach hyperparameters to model
        model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
        model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights

        # Model EMA
        ema = torch_utils.ModelEMA(model)

        # Start training
        nb = len(dataloader)  # number of batches
        n_burn = max(int(0.7 * nb), 500)  # burn-in iterations, max(0.7 epochs, 500 iterations)
        maps = np.zeros(nc)  # mAP per class
        # torch.autograd.set_detect_anomaly(True)
        results = (0, 0, 0, 0, 0, 0, 0)  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'

        print('Image sizes %g - %g train, %g test' % (imgsz_min, imgsz_max, imgsz_test))
        print('Using %g dataloader workers' % nw)
        print('Starting training for %g epochs...' % epochs)



        for i in range(opt.rho_num):
            current_rho = initial_rho * 10 ** i
            ADMM = admm.ADMM(model, file_name="./prune_config/" + opt.config_file + ".yaml", rho=current_rho)
            admm.admm_initialization(opt, ADMM=ADMM, model=model)  # intialize Z variable

            for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
                print("current rho: {}".format(current_rho))

                model.train()
                masks = {}
                if opt.masked_retrain and not opt.combine_progressive:
                    print("full acc re-train masking")

                    for name, W in (model.module.named_parameters() if type(
                            model) is torch.nn.parallel.DistributedDataParallel else model.named_parameters()):
                        if name not in ADMM.prune_ratios:
                            continue
                        above_threshold, W = admm.weight_pruning(opt, W, ADMM.prune_ratios[name])
                        W.data = W
                        masks[name] = above_threshold
                elif opt.combine_progressive:
                    print("progressive admm-train/re-train masking")
                    for name, W in (model.module.named_parameters() if type(
                            model) is torch.nn.parallel.DistributedDataParallel else model.named_parameters()):
                        weight = W.cpu().detach().numpy()
                        non_zeros = weight != 0
                        non_zeros = non_zeros.astype(np.float32)
                        zero_mask = torch.from_numpy(non_zeros).cuda()
                        W = torch.from_numpy(weight).cuda()
                        W.data = W
                        masks[name] = zero_mask

                # Update image weights (optional)
                if dataset.image_weights:
                    w = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weights
                    image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
                    dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n)  # rand weighted idx

                mloss = torch.zeros(4).to(device)  # mean losses
                print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
                pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
                for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------

                    ni = i + nb * epoch  # number integrated batches (since train start)
                    imgs = imgs.to(device).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0
                    targets = targets.to(device)

                    # Burn-in
                    if ni <= n_burn:
                        xi = [0, n_burn]  # x interp
                        model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                        accumulate = max(1, np.interp(ni, xi, [1, 64 / batch_size]).round())
                        for j, x in enumerate(optimizer.param_groups):
                            # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                            x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                            x['weight_decay'] = np.interp(ni, xi, [0.0, hyp['weight_decay'] if j == 1 else 0.0])
                            if 'momentum' in x:
                                x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])

                    # Multi-Scale
                    if opt.multi_scale:
                        if ni / accumulate % 1 == 0:  #  adjust img_size (67% - 150%) every 1 batch
                            img_size = random.randrange(grid_min, grid_max + 1) * gs
                        sf = img_size / max(imgs.shape[2:])  # scale factor
                        if sf != 1:
                            ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to 32-multiple)
                            imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

                    # Forward
                    pred = model(imgs)

                    # Loss
                    loss, loss_items = compute_loss(pred, targets, model)
                    if not torch.isfinite(loss):
                        print('WARNING: non-finite loss, ending training ', loss_items)
                        return results

                    # Backward
                    loss *= batch_size / 64  # scale loss


                    admm.z_u_update(opt, ADMM, model, device, dataloader, optimizer, epoch, imgs, i,
                                        tb_writer)  # update Z and U variables
                    loss, admm_loss, mixed_loss = admm.append_admm_loss(opt, ADMM, model,
                                                                            loss)  # append admm losss

                    if mixed_precision:
                        with amp.scale_loss(mixed_loss, optimizer) as scaled_loss:
                            scaled_loss.backward()
                    else:
                        mixed_loss.backward()

                    if opt.combine_progressive:
                        with torch.no_grad():
                            for name, W in (model.module.named_parameters() if type(
                                    model) is torch.nn.parallel.DistributedDataParallel else model.named_parameters()):
                                if name in masks:
                                    W.grad *= masks[name]

                    # Optimize
                    if ni % accumulate == 0:
                        optimizer.step()
                        optimizer.zero_grad()
                        ema.update(model)

                    # Print
                    mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                    mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                    s = ('%10s' * 2 + '%10.3g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem, *mloss, len(targets), img_size)
                    pbar.set_description(s)

                    # Plot
                    # if ni < 1:
                    #     f = 'train_batch%g.jpg' % i  # filename
                        # res = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
                        # if tb_writer:
                        #     tb_writer.add_image(f, res, dataformats='HWC', global_step=epoch)
                        #     # tb_writer.add_graph(model, imgs)  # add model to tensorboard

                    # end batch ------------------------------------------------------------------------------------------------

                # Update scheduler
                if opt.admm:
                    admm.admm_adjust_learning_rate(optimizer, epoch, opt)
                else:
                    scheduler.step()

                # Process epoch results
                ema.update_attr(model)
                final_epoch = epoch + 1 == epochs
                if not opt.notest:  # Calculate mAP  #or final_epoch
                    is_coco = any([x in data for x in ['coco.data', 'coco2014.data', 'coco2017.data']]) and model.nc == 80
                    results, maps = test.test(cfg,
                                              data,
                                              batch_size=batch_size,
                                              imgsz=imgsz_test,
                                              model=ema.ema,
                                              save_json=final_epoch and is_coco,
                                              single_cls=opt.single_cls,
                                              dataloader=testloader,
                                              multi_label=ni > n_burn)

                # Write
                with open(results_file, 'a') as f:
                    f.write(s + '%10.3g' * 7 % results + '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
                if len(opt.name) and opt.bucket:
                    os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))

                # Tensorboard
                if tb_writer:
                    tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                            'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
                            'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
                    for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                        tb_writer.add_scalar(tag, x, epoch)

                # Update best mAP
                fi = fitness(np.array(results).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
                if fi > best_fitness:
                    best_fitness = fi

                # end epoch ----------------------------------------------------------------------------------------------------
            # end training

            # admm_adjust_learning_rate ----------------------------------------------------------------------------------------------------
            admm.admm_adjust_learning_rate(optimizer, epoch, opt)
            # end admm_adjust_learning_rate ----------------------------------------------------------------------------------------------------

            print("Saving model.")
            torch.save(
                model.module.state_dict() if type(model) is nn.parallel.DistributedDataParallel else model.state_dict(),
                "./model_pruned/yolov4_{}_{}_{}.pt".format(
                    current_rho, opt.config_file, opt.sparsity_type))

        if not opt.evolve:
            plot_results()  # save as results.png
        print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        # dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
        # torch.cuda.empty_cache()
        # return results


    """=============="""
    """masked retrain"""
    """=============="""
    if opt.masked_retrain:
        ADMM = admm.ADMM(model, file_name="./prune_config/" + opt.config_file + ".yaml", rho=initial_rho)
        if not opt.resume:
            # possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
            print("\n>_ Loading file: ./model_pruned/yolov4_{}_{}_{}.pt".format(initial_rho * 10 ** (opt.rho_num - 1), opt.config_file, opt.sparsity_type))
            chkpt = torch.load("./model_pruned/yolov4_{}_{}_{}.pt".format(initial_rho * 10 ** (opt.rho_num - 1), opt.config_file, opt.sparsity_type), map_location=device)
            # chkpt = torch.load(weights, map_location=device)
            # load model
            try:
                # chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
                model.load_state_dict(chkpt, strict=False) #['model']

            except KeyError as e:
                # s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
                #     "See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
                raise KeyError() from e
            #----------------------------------------------hard prune------------------------------------------------
            admm.hard_prune(opt, ADMM, model)
            #----------------------------------------------hard prune------------------------------------------------
        else:
            try:
                chkpt = torch.load(weights, map_location=device)
                chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
                model.load_state_dict(chkpt['model'], strict=False)
            except KeyError as e:
                # s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
                #     "See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
                raise KeyError() from e
            # load optimizer
            if chkpt['optimizer'] is not None:
                optimizer.load_state_dict(chkpt['optimizer'])
                best_fitness = chkpt['best_fitness']

            # load results
            if chkpt.get('training_results') is not None:
                with open(results_file, 'w') as file:
                    file.write(chkpt['training_results'])  # write results.txt

            start_epoch = chkpt['epoch'] + 1
        del chkpt

        # Initialize distributed training
        if device.type != 'cpu' and torch.cuda.device_count() > 1 and torch.distributed.is_available():
            dist.init_process_group(backend='nccl',  # 'distributed backend'
                                    init_method='tcp://127.0.0.1:9999',  # distributed training init method
                                    world_size=1,  # number of nodes for distributed training
                                    rank=0)  # distributed training node rank
            model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
            model.yolo_layers = model.module.yolo_layers  # move yolo layer indices to top level

            # Model parameters
        model.nc = nc  # attach number of classes to model
        model.hyp = hyp  # attach hyperparameters to model
        model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
        model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights

        # Model EMA
        ema = torch_utils.ModelEMA(model)

        # Start training
        nb = len(dataloader)  # number of batches
        n_burn = max(3 * nb, 500)  # burn-in iterations, max(3 epochs, 500 iterations)
        maps = np.zeros(nc)  # mAP per class
        # torch.autograd.set_detect_anomaly(True)
        results = (0, 0, 0, 0, 0, 0, 0)  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
        print('Image sizes %g - %g train, %g test' % (imgsz_min, imgsz_max, imgsz_test))
        print('Using %g dataloader workers' % nw)
        print('Starting training for %g epochs...' % epochs)
        for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
            model.train()

            if opt.masked_retrain and not opt.combine_progressive:
                print("full acc re-train masking")
                masks = {}
                for name, W in (model.module.named_parameters() if type(
                        model) is torch.nn.parallel.DistributedDataParallel else model.named_parameters()):
                    if name not in ADMM.prune_ratios:
                        continue
                    above_threshold, W = admm.weight_pruning(opt, W, ADMM.prune_ratios[name])
                    W.data = W
                    masks[name] = above_threshold
            elif opt.combine_progressive:
                print("progressive admm-train/re-train masking")
                masks = {}
                for name, W in (model.module.named_parameters() if type(
                        model) is torch.nn.parallel.DistributedDataParallel else model.named_parameters()):
                    weight = W.cpu().detach().numpy()
                    non_zeros = weight != 0
                    non_zeros = non_zeros.astype(np.float32)
                    zero_mask = torch.from_numpy(non_zeros).cuda()
                    W = torch.from_numpy(weight).cuda()
                    W.data = W
                    masks[name] = zero_mask

            # Update image weights (optional)
            if dataset.image_weights:
                w = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weights
                image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
                dataset.indices = random.choices(range(dataset.n), weights=image_weights,
                                                 k=dataset.n)  # rand weighted idx

            mloss = torch.zeros(4).to(device)  # mean losses
            print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
            pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
            for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
                ni = i + nb * epoch  # number integrated batches (since train start)
                imgs = imgs.to(device).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0
                targets = targets.to(device)

                # Burn-in
                if ni <= n_burn:
                    xi = [0, n_burn]  # x interp
                    model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                    accumulate = max(1, np.interp(ni, xi, [1, 64 / batch_size]).round())
                    for j, x in enumerate(optimizer.param_groups):
                        # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                        x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                        x['weight_decay'] = np.interp(ni, xi, [0.0, hyp['weight_decay'] if j == 1 else 0.0])
                        if 'momentum' in x:
                            x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])

                # Multi-Scale
                if opt.multi_scale:
                    if ni / accumulate % 1 == 0:  # adjust img_size (67% - 150%) every 1 batch
                        img_size = random.randrange(grid_min, grid_max + 1) * gs
                    sf = img_size / max(imgs.shape[2:])  # scale factor
                    if sf != 1:
                        ns = [math.ceil(x * sf / gs) * gs for x in
                              imgs.shape[2:]]  # new shape (stretched to 32-multiple)
                        imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

                # Forward
                pred = model(imgs)

                # Loss
                loss, loss_items = compute_loss(pred, targets, model)
                if not torch.isfinite(loss):
                    print('WARNING: non-finite loss, ending training ', loss_items)
                    return results

                # Backward
                loss *= batch_size / 64  # scale loss
                if mixed_precision:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                if opt.combine_progressive:
                    with torch.no_grad():
                        for name, W in (model.module.named_parameters() if type(
                                model) is torch.nn.parallel.DistributedDataParallel else model.named_parameters()):
                            if name in masks:
                                W.grad *= masks[name]
                if opt.masked_retrain:
                    with torch.no_grad():
                        for name, W in (model.module.named_parameters() if type(
                                model) is torch.nn.parallel.DistributedDataParallel else model.named_parameters()):
                            if name in masks:
                                W.grad *= masks[name]

                # Optimize
                if ni % accumulate == 0:
                    optimizer.step()
                    optimizer.zero_grad()
                    ema.update(model)

                # Print
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 + '%10.3g' * 6) % (
                '%g/%g' % (epoch, epochs - 1), mem, *mloss, len(targets), img_size)
                pbar.set_description(s)

                # Plot
                if ni < 1:
                    f = 'train_batch%g.jpg' % i  # filename
                    res = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
                    if tb_writer:
                        tb_writer.add_image(f, res, dataformats='HWC', global_step=epoch)
                        # tb_writer.add_graph(model, imgs)  # add model to tensorboard

                # end batch ------------------------------------------------------------------------------------------------

            # Update scheduler
            scheduler.step()

            # Process epoch results
            ema.update_attr(model)
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                is_coco = any(
                    [x in data for x in ['coco.data', 'coco2014.data', 'coco2017.data']]) and model.nc == 80
                results, maps = test.test(cfg,
                                          data,
                                          batch_size=batch_size,
                                          imgsz=imgsz_test,
                                          model=ema.ema,
                                          save_json=final_epoch and is_coco,
                                          single_cls=opt.single_cls,
                                          dataloader=testloader,
                                          multi_label=ni > n_burn)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.3g' * 7 % results + '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp results.txt gs://%s/results/results%s.txt' % (opt.bucket, opt.name))

            # Tensorboard
            if tb_writer:
                tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                        'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/F1',
                        'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
                for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                    tb_writer.add_scalar(tag, x, epoch)

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
            if fi > best_fitness:  #results[2]
                best_fitness = fi  #results[2]
                print("\n>_ Got better accuracy {:.3f}% now...\n".format(results[2]))
                # torch.save(ema.ema.module.state_dict() if hasattr(model, 'module') else ema.ema.state_dict(),
                #            "./model_retrained/yolov4_retrained_acc_{:.3f}_{}rhos_{}_{}.pt".format(results[2], opt.rho_num, opt.config_file, opt.sparsity_type))

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    chkpt = {'epoch': epoch,
                             'best_fitness': best_fitness,
                             'training_results': f.read(),
                             'model': ema.ema.module.state_dict() if hasattr(model,
                                                                             'module') else ema.ema.state_dict(),
                             'optimizer': None if final_epoch else optimizer.state_dict()}

                # Save last, best and delete
                torch.save(chkpt, last)
                if (best_fitness == fi) and not final_epoch:
                    torch.save(chkpt, best)
                del chkpt

            # end epoch ----------------------------------------------------------------------------------------------------
        # end training

        test_sparsity(model)
        print("Best Acc: {:.4f}".format(results[2]))
        n = opt.name
        if len(n):
            n = '_' + n if not n.isnumeric() else n
            fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
            for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
                if os.path.exists(f1):
                    os.rename(f1, f2)  # rename
                    ispt = f2.endswith('.pt')  # is *.pt
                    strip_optimizer(f2) if ispt else None  # strip optimizer
                    os.system('gsutil cp %s gs://%s/weights' % (
                    f2, opt.bucket)) if opt.bucket and ispt else None  # upload

        if not opt.evolve:
            plot_results()  # save as results.png
        print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        # dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
        # torch.cuda.empty_cache()
        return results
Beispiel #4
0
def train(train_loader, criterion, optimizer, epoch, config):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    nat_losses = AverageMeter()
    adv_losses = AverageMeter()
    nat_loss = 0
    adv_loss = 0
    nat_top1 = AverageMeter()
    adv_top1 = AverageMeter()

    # switch to train mode
    config.model.train()

    end = time.time()
    for i, (input, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        # adjust learning rate
        if config.admm:
            admm.admm_adjust_learning_rate(optimizer, epoch, config)
        else:
            scheduler.step()

        if config.gpu is not None:
            input = input.cuda(config.gpu, non_blocking=True)
        target = target.cuda(config.gpu, non_blocking=True)

        if config.mixup:
            input, target_a, target_b, lam = mixup_data(
                input, target, config.alpha)

        # compute output
        nat_output, adv_output, pert_inputs = config.model(input, target)

        if config.mixup:
            adv_loss = mixup_criterion(criterion, adv_output, target_a,
                                       target_b, lam, config.smooth)
            nat_loss = mixup_criterion(criterion, nat_output, target_a,
                                       target_b, lam, config.smooth)
        else:
            adv_loss = criterion(adv_output, target, smooth=config.smooth)
            nat_loss = criterion(nat_output, target, smooth=config.smooth)
        if config.admm:
            admm.admm_update(config, ADMM, device, train_loader, optimizer,
                             epoch, input, i)  # update Z and U
            adv_loss, admm_loss, mixed_loss = admm.append_admm_loss(
                config, ADMM, adv_loss)  # append admm losss

        # measure accuracy and record loss
        nat_acc1, _ = accuracy(nat_output, target, topk=(1, 5))
        adv_acc1, _ = accuracy(adv_output, target, topk=(1, 5))

        nat_losses.update(nat_loss.item(), input.size(0))
        adv_losses.update(adv_loss.item(), input.size(0))
        adv_top1.update(adv_acc1[0], input.size(0))
        nat_top1.update(nat_acc1[0], input.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        if config.admm:
            mixed_loss.backward()
        else:
            adv_loss.backward()

        if config.masked_progressive:
            with torch.no_grad():
                for name, W in config.model.named_parameters():
                    if name in config.zero_masks:
                        W.grad *= config.zero_masks[name]

        if config.masked_retrain:
            with torch.no_grad():
                for name, W in config.model.named_parameters():
                    if name in config.masks:
                        W.grad *= config.masks[
                            name]  #returns boolean array called mask when weights are above treshhold

        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % config.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Nat_Loss {nat_loss.val:.4f} ({nat_loss.avg:.4f})\t'
                  'Nat_Acc@1 {nat_top1.val:.3f} ({nat_top1.avg:.3f})\t'
                  'Adv_Loss {adv_loss.val:.4f} ({adv_loss.avg:.4f})\t'
                  'Adv_Acc@1 {adv_top1.val:.3f} ({adv_top1.avg:.3f})\t'.format(
                      epoch,
                      i,
                      len(train_loader),
                      batch_time=batch_time,
                      data_time=data_time,
                      nat_loss=nat_losses,
                      nat_top1=nat_top1,
                      adv_loss=adv_losses,
                      adv_top1=adv_top1))
Beispiel #5
0
def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--config_file', type=str, default='', help ="config file")
    parser.add_argument('--stage', type=str, default='', help ="select the pruning stage")

    
    args = parser.parse_args()

    config = Config(args)
    
    use_cuda = True


    init = Init_Func(config.init_func)
    

    torch.manual_seed(config.random_seed)
    
    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor()
                           #transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=64, shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=False, transform=transforms.Compose([
                           transforms.ToTensor()
                           #transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=1000, shuffle=True, **kwargs)


    

    model = None
    if config.arch == 'lenet_bn':
        model = LeNet_BN().to(device)
    elif config.arch == 'lenet':
        model = LeNet().to(device)
    elif config.arch == 'lenet_adv':
        model = LeNet_adv(w=config.width_multiplier).to(device)
    if config.arch not in model_names:
        raise Exception("unknown model architecture")

    ### for initialization experiments
    
    for name,W in model.named_parameters():
        if 'conv' in name and 'bias' not in name:
            print ('initialization uniform')        
            #W.data = torch.nn.init.uniform_(W.data)
            W.data = init.init(W.data)
    model = AttackPGD(model,config)
    #### loading initialization
    '''
    ### for lottery tickets experiments
    read_dict = np.load('lenet_adv_retrained_w16_1_cut.pt_init.npy').item()
    for name,W in model.named_parameters():
        if name not in read_dict:
            continue
        print (name)

        #print ('{} has shape {}'.format(name,read_dict[name].shape))
        print (read_dict[name].shape)
        W.data = torch.from_numpy(read_dict[name])
    '''
    config.model = model



    
    if config.load_model:
        # unlike resume, load model does not care optimizer status or start_epoch
        print('==> Loading from {}'.format(config.load_model))
        config.model.load_state_dict(torch.load(config.load_model, map_location=lambda storage, loc: storage))
        #config.model.load_state_dict(torch.load(config.load_model,map_location = {'cuda:0':'cuda:{}'.format(config.gpu)}))
                

    torch.cuda.set_device(config.gpu)
    config.model.cuda(config.gpu)
    test(config,  device, test_loader)    
    ADMM = None

    config.prepare_pruning()
    
    if config.admm:
        ADMM = admm.ADMM(config)

    optimizer = None
    if (config.optimizer == 'sgd'):
        optimizer = torch.optim.SGD(config.model.parameters(), config.lr,
                                momentum=0.9,
                                    weight_decay=1e-6)

    elif (config.optimizer =='adam'):
        optimizer = torch.optim.Adam(config.model.parameters(),config.lr)    

    scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=config.epochs*len(train_loader),eta_min=4e-08)

        
        
                      
    if config.resume:
        if os.path.isfile(config.resume):
            checkpoint = torch.load(config.resume)
            config.start_epoch = checkpoint['epoch']
            best_adv_acc = checkpoint['best_adv_acc']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(config.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(config.resume))            

        
    if config.masked_retrain:
        # make sure small weights are pruned and confirm the acc
        print ("<============masking both weights and gradients for retrain")    
        admm.masking(config)

        print ("<============testing sparsity before retrain")
        admm.test_sparsity(config)
        test(config,  device, test_loader)        
    if config.masked_progressive:
        admm.zero_masking(config)

        
    for epoch in range(0, config.epochs+1):

        if config.admm:
            admm.admm_adjust_learning_rate(optimizer, epoch, config)
        else:
            if config.lr_scheduler == 'cosine':
                scheduler.step()
            elif config.lr_scheduler == 'sgd':
                if epoch == 20:
                    config.lr/=10
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = config.lr
            else:
                pass # it uses adam
            
        train(config,ADMM,device, train_loader, optimizer, epoch)
        test(config, device, test_loader)
        

    admm.test_sparsity(config)
    test(config,  device, test_loader)    
    if config.save_model and config.admm:
        print ('saving model {}'.format(config.save_model))
        torch.save(config.model.state_dict(),config.save_model)
Beispiel #6
0
def prune_train(args, pre_mask, ADMM, train_loader, criterion, optimizer,
                scheduler, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    idx_loss_dict = {}

    # switch to train mode
    model.train()

    end = time.time()
    for i, (input, target) in enumerate(train_loader):
        target = target.long().cuda()

        # measure data loading time
        data_time.update(time.time() - end)

        # adjust learning rate
        if args.admm:
            admm.admm_adjust_learning_rate(optimizer, epoch, args)
        else:
            scheduler.step()

        input = input.float().cuda()

        if args.mixup:
            input, target_a, target_b, lam = mixup_data(
                input, target, args.alpha)

        # compute output
        output = model(input)

        if args.mixup:
            ce_loss = mixup_criterion(criterion, output, target_a, target_b,
                                      lam, args.smooth)
        else:
            ce_loss = criterion(output, target, smooth=args.smooth)
        mixed_loss = ce_loss

        if args.admm:
            admm.z_u_update(args, ADMM, model, device, train_loader, optimizer,
                            epoch, input, i, writer)  # update Z and U
            ce_loss, admm_loss, mixed_loss = admm.append_admm_loss(
                args, ADMM, model, ce_loss)  # append admm loss
        if args.admm_mask:
            admm.y_k_update(args, ADMM, model, device, train_loader, optimizer,
                            epoch, input, i, writer)  # update Y\K
            ce_loss, admm_loss, mixed_loss = admm.append_mask_loss(
                args, ADMM, model, mixed_loss)

        # measure accuracy and record loss
        acc1, _ = accuracy(output, target, topk=(1, 5))

        losses.update(ce_loss.item(), input.size(0))
        top1.update(acc1[0], input.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()

        if args.admm or args.admm_mask:
            mixed_loss.backward(retain_graph=True)
        else:
            ce_loss.backward()

        if pre_mask:
            with torch.no_grad():
                for name, W in (model.named_parameters()):
                    # shared layers
                    if name in args.fixed_layer:
                        W.grad *= 0
                        continue

                    # pruned weight layers: fix weight for previous task
                    if name in args.pruned_layer and name in pre_mask:
                        W.grad *= pre_mask[name].cuda()

                    # adaptively learn the mask: fix mask for trainable weight part
                    if args.adaptive_mask and 'mask' in name and args.admm:
                        W.grad *= args.mask[name.replace('w_mask',
                                                         'weight')].cuda()

                        #W.grad *= 100
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.log_interval == 0:
            for param_group in optimizer.param_groups:
                current_lr = param_group['lr']
            print('({0}) lr:[{1:.5f}]  '
                  'Epoch: [{2}][{3}/{4}]\t'
                  'Status: admm-[{5}] retrain-[{6}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Acc@1 {top1.val:.3f}% ({top1.avg:.3f}%)\t'.format(
                      args.optmzr,
                      current_lr,
                      epoch,
                      i,
                      len(train_loader),
                      args.admm,
                      args.masked_retrain,
                      batch_time=data_time,
                      loss=losses,
                      top1=top1))
        if i % 100 == 0:
            idx_loss_dict[i] = losses.avg