def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--config_file', type=str, default='', help="config file") parser.add_argument('--stage', type=str, default='', help="select the pruning stage") args = parser.parse_args() config = Config(args) use_cuda = True torch.manual_seed(1) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader(datasets.MNIST( '../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ])), batch_size=64, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(datasets.MNIST( '../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ])), batch_size=1000, shuffle=True, **kwargs) model = None if config.arch == 'lenet_bn': model = LeNet_BN().to(device) elif config.arch == 'lenet': model = LeNet().to(device) elif config.arch == 'lenet_adv': model = LeNet_adv(config.width_multiplier).to(device) torch.cuda.set_device(config.gpu) model.cuda(config.gpu) config.model = model ADMM = None config.prepare_pruning() if config.admm: ADMM = admm.ADMM(config) criterion = CrossEntropyLossMaybeSmooth(smooth_eps=config.smooth_eps).cuda( config.gpu) config.smooth = config.smooth_eps > 0.0 config.mixup = config.alpha > 0.0 config.warmup = (not config.admm) and config.warmup_epochs > 0 optimizer_init_lr = config.warmup_lr if config.warmup else config.lr if (config.optimizer == 'sgd'): optimizer = torch.optim.SGD(config.model.parameters(), optimizer_init_lr, momentum=0.9, weight_decay=1e-4) elif (config.optimizer == 'adam'): optimizer = torch.optim.Adam(config.model.parameters(), optimizer_init_lr) else: raise Exception("unknown optimizer") scheduler = None if config.lr_scheduler == 'cosine': scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=config.epochs * len(train_loader), eta_min=4e-08) elif config.lr_scheduler == 'default': pass else: raise Exception("unknown lr scheduler") if config.load_model: # unlike resume, load model does not care optimizer status or start_epoch print('==> Loading from {}'.format(config.load_model)) config.model.load_state_dict( torch.load(config.load_model, map_location={'cuda:0': 'cuda:{}'.format(config.gpu)})) test(config, device, test_loader) global best_acc if config.resume: if os.path.isfile(config.resume): checkpoint = torch.load(config.resume) config.start_epoch = checkpoint['epoch'] best_acc = checkpoint['best_acc'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})".format( config.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(config.resume)) if config.masked_retrain: # make sure small weights are pruned and confirm the acc print("<============masking both weights and gradients for retrain") admm.masking(config) print("<============testing sparsity before retrain") admm.test_sparsity(config) test(config, device, test_loader) if config.masked_progressive: admm.zero_masking(config) for epoch in range(0, config.epochs + 1): train(config, ADMM, device, train_loader, criterion, optimizer, scheduler, epoch) test(config, device, test_loader) save_checkpoint( config, { 'epoch': epoch + 1, 'arch': config.arch, 'state_dict': config.model.state_dict(), 'best_acc': best_acc, 'optimizer': optimizer.state_dict() }) print('overall best_acc is {}'.format(best_acc)) if (config.save_model and config.admm): print('saving model {}'.format(config.save_model)) torch.save(config.model.state_dict(), config.save_model)
def main_worker(gpu, ngpus_per_node, config): global best_acc1 config.gpu = gpu if config.gpu is not None: print("Use GPU: {} for training".format(config.gpu)) if config.distributed: if config.dist_url == "env://" and config.rank == -1: config.rank = int(os.environ["RANK"]) if config.multiprocessing_distributed: # For multiprocessing distributed training, rank needs to be the # global rank among all the processes config.rank = config.rank * ngpus_per_node + gpu dist.init_process_group(backend=config.dist_backend, init_method=config.dist_url, world_size=config.world_size, rank=config.rank) # create model if config.pretrained: print("=> using pre-trained model '{}'".format(config.arch)) model = models.__dict__[config.arch](pretrained=True) print(model) param_names = [] module_names = [] for name, W in model.named_modules(): module_names.append(name) print(module_names) for name, W in model.named_parameters(): param_names.append(name) print(param_names) else: print("=> creating model '{}'".format(config.arch)) if config.arch == "alexnet_bn": model = AlexNet_BN() print(model) for i, (name, W) in enumerate(model.named_parameters()): print(name) else: model = models.__dict__[config.arch]() print(model) if config.distributed: # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. if config.gpu is not None: torch.cuda.set_device(config.gpu) model.cuda(config.gpu) # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have config.batch_size = int(config.batch_size / ngpus_per_node) config.workers = int(config.workers / ngpus_per_node) model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[config.gpu]) else: model.cuda() # DistributedDataParallel will divide and allocate batch_size to all # available GPUs if device_ids are not set model = torch.nn.parallel.DistributedDataParallel(model) elif config.gpu is not None: torch.cuda.set_device(config.gpu) model = model.cuda(config.gpu) else: # DataParallel will divide and allocate batch_size to all available GPUs if config.arch.startswith('alexnet') or config.arch.startswith('vgg'): model.features = torch.nn.DataParallel(model.features) model.cuda() else: model = torch.nn.DataParallel(model).cuda() config.model = model # define loss function (criterion) and optimizer criterion = CrossEntropyLossMaybeSmooth(smooth_eps=config.smooth_eps).cuda( config.gpu) config.smooth = config.smooth_eps > 0.0 config.mixup = config.alpha > 0.0 # note that loading a pretrain model does not inherit optimizer info # will use resume to resume admm training if config.load_model: if os.path.isfile(config.load_model): if (config.gpu): model.load_state_dict( torch.load( config.load_model, map_location={'cuda:0': 'cuda:{}'.format(config.gpu)})) else: model.load_state_dict(torch.load(config.load_model)) else: print("=> no checkpoint found at '{}'".format(config.resume)) config.prepare_pruning() nonzero = 0 zero = 0 for name, W in model.named_parameters(): if name in config.conv_names: W = W.cpu().detach().numpy() zero += np.sum(W == 0) nonzero += np.sum(W != 0) total = nonzero + zero print('compression rate is {}'.format(total * 1.0 / nonzero)) import sys sys.exit() # optionally resume from a checkpoint if config.resume: ## will add logic for loading admm variables if os.path.isfile(config.resume): print("=> loading checkpoint '{}'".format(config.resume)) checkpoint = torch.load(config.resume) config.start_epoch = checkpoint['epoch'] best_acc1 = checkpoint['best_acc1'] ADMM.ADMM_U = checkpoint['admm']['ADMM_U'] ADMM.ADMM_Z = checkpoint['admm']['ADMM_Z'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})".format( config.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(config.resume)) cudnn.benchmark = True # Data loading code traindir = os.path.join(config.data, 'train') valdir = os.path.join(config.data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) if config.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) else: train_sampler = None train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=config.batch_size, shuffle=(train_sampler is None), num_workers=config.workers, pin_memory=True, sampler=train_sampler) val_loader = torch.utils.data.DataLoader(datasets.ImageFolder( valdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])), batch_size=config.batch_size, shuffle=False, num_workers=config.workers, pin_memory=True) config.warmup = (not config.admm) and config.warmup_epochs > 0 optimizer_init_lr = config.warmup_lr if config.warmup else config.lr optimizer = None if (config.optimizer == 'sgd'): optimizer = torch.optim.SGD(model.parameters(), optimizer_init_lr, momentum=config.momentum, weight_decay=config.weight_decay) elif (config.optimizer == 'adam'): optimizer = torch.optim.Adam(model.parameters(), optimizer_init_lr) scheduler = None if config.lr_scheduler == 'cosine': scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=config.epochs * len(train_loader), eta_min=4e-08) elif config.lr_scheduler == 'default': # sets the learning rate to the initial LR decayed by gamma every 30 epochs""" scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30 * len(train_loader), gamma=0.1) else: raise Exception("unknown lr scheduler") if config.warmup: scheduler = GradualWarmupScheduler( optimizer, multiplier=config.lr / config.warmup_lr, total_iter=config.warmup_epochs * len(train_loader), after_scheduler=scheduler) if False: validate(val_loader, criterion, config) return ADMM = None if config.verify: admm.masking(config) admm.test_sparsity(config) validate(val_loader, criterion, config) import sys sys.exit() if config.admm: ADMM = admm.ADMM(config) if config.masked_retrain: # make sure small weights are pruned and confirm the acc admm.masking(config) print("before retrain starts") admm.test_sparsity(config) validate(val_loader, criterion, config) if config.masked_progressive: admm.zero_masking(config) for epoch in range(config.start_epoch, config.epochs): if config.distributed: train_sampler.set_epoch(epoch) # train for one epoch train(train_loader, config, ADMM, criterion, optimizer, scheduler, epoch) # evaluate on validation set acc1 = validate(val_loader, criterion, config) # remember best acc@1 and save checkpoint is_best = acc1 > best_acc1 best_acc1 = max(acc1, best_acc1) if is_best and not config.admm: # we don't need admm to have best validation acc print('saving new best model {}'.format(config.save_model)) torch.save(model.state_dict(), config.save_model) if not config.multiprocessing_distributed or ( config.multiprocessing_distributed and config.rank % ngpus_per_node == 0): save_checkpoint( config, { 'admm': {}, 'epoch': epoch + 1, 'arch': config.arch, 'state_dict': model.state_dict(), 'best_acc1': best_acc1, 'optimizer': optimizer.state_dict(), }, is_best) # save last model for admm, optimizer detail is not necessary if config.save_model and config.admm: print('saving model {}'.format(config.save_model)) torch.save(model.state_dict(), config.save_model) if config.masked_retrain: print("after masked retrain") admm.test_sparsity(config)
global best_acc if top1.avg.item() > best_acc and not config.admm: best_acc = top1.avg.item() print('new best_acc is {top1.avg:.3f}'.format(top1=top1)) print('saving model {}'.format(config.save_model)) torch.save(config.model.state_dict(), config.save_model) return top1.avg if config.admm: validate(testloader, criterion, config) if config.masked_retrain: # make sure small weights are pruned and confirm the acc print("<============masking both weights and gradients for retrain") admm.masking(config) print("<============testing sparsity before retrain") admm.test_sparsity(config) validate(testloader, criterion, config) if config.masked_progressive: admm.zero_masking(config) for epoch in range(start_epoch, start_epoch + config.epochs): train(trainloader, criterion, optimizer, epoch, config) validate(testloader, criterion, config) ####LOG HERE### if config.logging: logger.info(f'---Final Results---') logger.info(f'overall best_acc is {best_acc}')
def run_admm(data_name,data_set,data_end_index,fea_dict,lab_dict,arch_dict,cfg_file,processed_first,next_config_file,ADMM,masks,ep,ck): # This function processes the current chunk using the information in cfg_file. In parallel, the next chunk is load into the CPU memory # Reading chunk-specific cfg file (first argument-mandatory file) if not(os.path.exists(cfg_file)): sys.stderr.write('ERROR: The config file %s does not exist!\n'%(cfg_file)) sys.exit(0) else: config = configparser.ConfigParser() config.read(cfg_file) # Setting torch seed seed=int(config['exp']['seed']) torch.manual_seed(seed) random.seed(seed) np.random.seed(seed) # Reading config parameters output_folder=config['exp']['out_folder'] multi_gpu=strtobool(config['exp']['multi_gpu']) to_do=config['exp']['to_do'] info_file=config['exp']['out_info'] model=config['model']['model'].split('\n') forward_outs=config['forward']['forward_out'].split(',') forward_normalize_post=list(map(strtobool,config['forward']['normalize_posteriors'].split(','))) forward_count_files=config['forward']['normalize_with_counts_from'].split(',') require_decodings=list(map(strtobool,config['forward']['require_decoding'].split(','))) use_cuda=strtobool(config['exp']['use_cuda']) save_gpumem=strtobool(config['exp']['save_gpumem']) is_production=strtobool(config['exp']['production']) if to_do=='train': batch_size=int(config['batches']['batch_size_train']) if to_do=='valid': batch_size=int(config['batches']['batch_size_valid']) if to_do=='forward': batch_size=1 # ***** Reading the Data******** if processed_first: # admm初始化的工作,咱们都在这儿做了吧 # Reading all the features and labels for this chunk shared_list=[] p=threading.Thread(target=read_lab_fea, args=(cfg_file,is_production,shared_list,output_folder,)) p.start() p.join() data_name=shared_list[0] data_end_index=shared_list[1] fea_dict=shared_list[2] lab_dict=shared_list[3] arch_dict=shared_list[4] data_set=shared_list[5] # converting numpy tensors into pytorch tensors and put them on GPUs if specified if not(save_gpumem) and use_cuda: data_set=torch.from_numpy(data_set).float().cuda() else: data_set=torch.from_numpy(data_set).float() # Reading all the features and labels for the next chunk shared_list=[] p=threading.Thread(target=read_lab_fea, args=(next_config_file,is_production,shared_list,output_folder,)) p.start() # Reading model and initialize networks inp_out_dict=fea_dict [nns,costs]=model_init(inp_out_dict,model,config,arch_dict,use_cuda,multi_gpu,to_do) if processed_first: ADMM = admm.ADMM(config, nns) # optimizers initialization optimizers=optimizer_init(nns,config,arch_dict) # pre-training and multi-gpu init for net in nns.keys(): pt_file_arch=config[arch_dict[net][0]]['arch_pretrain_file'] if pt_file_arch!='none': checkpoint_load = torch.load(pt_file_arch) nns[net].load_state_dict(checkpoint_load['model_par']) optimizers[net].load_state_dict(checkpoint_load['optimizer_par']) optimizers[net].param_groups[0]['lr']=float(config[arch_dict[net][0]]['arch_lr']) # loading lr of the cfg file for pt if multi_gpu: nns[net] = torch.nn.DataParallel(nns[net]) if to_do=='forward': post_file={} for out_id in range(len(forward_outs)): if require_decodings[out_id]: out_file=info_file.replace('.info','_'+forward_outs[out_id]+'_to_decode.ark') else: out_file=info_file.replace('.info','_'+forward_outs[out_id]+'.ark') post_file[forward_outs[out_id]]=open_or_fd(out_file,output_folder,'wb') if strtobool(config['exp']['retrain']) and processed_first and strtobool(config['exp']['masked_progressive']): # make sure small weights are pruned and confirm the acc print ("<============masking both weights and gradients for retrain") masks = admm.masking(config, ADMM, nns) print("<============all masking statistics") masks = admm.zero_masking(config, nns) print ("<============testing sparsity before retrain") admm.test_sparsity(config, nns, ADMM) if strtobool(config['exp']['masked_progressive']) and processed_first and strtobool(config['exp']['admm']): masks = admm.zero_masking(config, nns) # check automatically if the model is sequential seq_model=is_sequential_dict(config,arch_dict) # ***** Minibatch Processing loop******** if seq_model or to_do=='forward': N_snt=len(data_name) N_batches=int(N_snt/batch_size) else: N_ex_tr=data_set.shape[0] N_batches=int(N_ex_tr/batch_size) beg_batch=0 end_batch=batch_size snt_index=0 beg_snt=0 start_time = time.time() # array of sentence lengths arr_snt_len=shift(shift(data_end_index, -1,0)-data_end_index,1,0) arr_snt_len[0]=data_end_index[0] loss_sum=0 err_sum=0 inp_dim=data_set.shape[1] for i in range(N_batches): max_len=0 if seq_model: max_len=int(max(arr_snt_len[snt_index:snt_index+batch_size])) inp= torch.zeros(max_len,batch_size,inp_dim).contiguous() for k in range(batch_size): snt_len=data_end_index[snt_index]-beg_snt N_zeros=max_len-snt_len # Appending a random number of initial zeros, tge others are at the end. N_zeros_left=random.randint(0,N_zeros) # randomizing could have a regularization effect inp[N_zeros_left:N_zeros_left+snt_len,k,:]=data_set[beg_snt:beg_snt+snt_len,:] beg_snt=data_end_index[snt_index] snt_index=snt_index+1 else: # features and labels for batch i if to_do!='forward': inp= data_set[beg_batch:end_batch,:].contiguous() else: snt_len=data_end_index[snt_index]-beg_snt inp= data_set[beg_snt:beg_snt+snt_len,:].contiguous() beg_snt=data_end_index[snt_index] snt_index=snt_index+1 # use cuda if use_cuda: inp=inp.cuda() if to_do=='train': # Forward input, with autograd graph active outs_dict=forward_model(fea_dict,lab_dict,arch_dict,model,nns,costs,inp,inp_out_dict,max_len,batch_size,to_do,forward_outs) if strtobool(config['exp']['admm']): batch_idx = i + ck admm.admm_update(config,ADMM,nns, ep,batch_idx) # update Z and U outs_dict['loss_final'],admm_loss,mixed_loss = admm.append_admm_loss(config,ADMM,nns,outs_dict['loss_final']) # append admm losss for opt in optimizers.keys(): optimizers[opt].zero_grad() if strtobool(config['exp']['admm']): mixed_loss.backward() else: outs_dict['loss_final'].backward() if strtobool(config['exp']['masked_progressive']) and not strtobool(config['exp']['retrain']): with torch.no_grad(): for net in nns.keys(): for name, W in nns[net].named_parameters(): if name in masks: W.grad *=masks[name] break if strtobool(config['exp']['retrain']): with torch.no_grad(): for net in nns.keys(): for name, W in nns[net].named_parameters(): if name in masks: W.grad *=masks[name] break # Gradient Clipping (th 0.1) #for net in nns.keys(): # torch.nn.utils.clip_grad_norm_(nns[net].parameters(), 0.1) for opt in optimizers.keys(): if not(strtobool(config[arch_dict[opt][0]]['arch_freeze'])): optimizers[opt].step() else: with torch.no_grad(): # Forward input without autograd graph (save memory) outs_dict=forward_model(fea_dict,lab_dict,arch_dict,model,nns,costs,inp,inp_out_dict,max_len,batch_size,to_do,forward_outs) if to_do=='forward': for out_id in range(len(forward_outs)): out_save=outs_dict[forward_outs[out_id]].data.cpu().numpy() if forward_normalize_post[out_id]: # read the config file counts = load_counts(forward_count_files[out_id]) out_save=out_save-np.log(counts/np.sum(counts)) # save the output write_mat(output_folder,post_file[forward_outs[out_id]], out_save, data_name[i]) else: loss_sum=loss_sum+outs_dict['loss_final'].detach() err_sum=err_sum+outs_dict['err_final'].detach() # update it to the next batch beg_batch=end_batch end_batch=beg_batch+batch_size # Progress bar if to_do == 'train': status_string="Training | (Batch "+str(i+1)+"/"+str(N_batches)+")"+" | L:" +str(round(loss_sum.cpu().item()/(i+1),3)) if i==N_batches-1: status_string="Training | (Batch "+str(i+1)+"/"+str(N_batches)+")" if to_do == 'valid': status_string="Validating | (Batch "+str(i+1)+"/"+str(N_batches)+")" if to_do == 'forward': status_string="Forwarding | (Batch "+str(i+1)+"/"+str(N_batches)+")" progress(i, N_batches, status=status_string) elapsed_time_chunk=time.time() - start_time loss_tot=loss_sum/N_batches err_tot=err_sum/N_batches # clearing memory del inp, outs_dict, data_set # save the model if to_do=='train': for net in nns.keys(): checkpoint={} if multi_gpu: checkpoint['model_par']=nns[net].module.state_dict() else: checkpoint['model_par']=nns[net].state_dict() checkpoint['optimizer_par']=optimizers[net].state_dict() out_file=info_file.replace('.info','_'+arch_dict[net][0]+'.pkl') torch.save(checkpoint, out_file) if to_do=='forward': for out_name in forward_outs: post_file[out_name].close() # Write info file with open(info_file, "w") as text_file: text_file.write("[results]\n") if to_do!='forward': text_file.write("loss=%s\n" % loss_tot.cpu().numpy()) text_file.write("err=%s\n" % err_tot.cpu().numpy()) text_file.write("elapsed_time_chunk=%f\n" % elapsed_time_chunk) text_file.close() # Getting the data for the next chunk (read in parallel) p.join() data_name=shared_list[0] data_end_index=shared_list[1] fea_dict=shared_list[2] lab_dict=shared_list[3] arch_dict=shared_list[4] data_set=shared_list[5] # converting numpy tensors into pytorch tensors and put them on GPUs if specified if not(save_gpumem) and use_cuda: data_set=torch.from_numpy(data_set).float().cuda() else: data_set=torch.from_numpy(data_set).float() return [data_name,data_set,data_end_index,fea_dict,lab_dict,arch_dict,masks,ADMM]
lr = args.lr # best_val_loss = None stage = 'train' # At any point you can hit Ctrl + C to break out of training early. try: if args.admm: stage = 'admm' args.masked_retrain = True lr = args.lr / 4 train_procedure(lr) if args.masked_retrain: stage = 'masked_retrain' lr = args.lr admm.masking(args, config, model) admm.test_sparsity(args, config, model) train_procedure(lr) admm.test_sparsity(args, config, model) except KeyboardInterrupt: print('-' * 89) print('Exiting from training early') # Load the best saved model. with open(args.save, 'rb') as f: model = torch.load(f) # after load the rnn params are not a continuous chunk of memory # this makes them a continuous chunk, and will speed up forward pass model.rnn.flatten_parameters()
def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--config_file', type=str, default='', help ="config file") parser.add_argument('--stage', type=str, default='', help ="select the pruning stage") args = parser.parse_args() config = Config(args) use_cuda = True init = Init_Func(config.init_func) torch.manual_seed(config.random_seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor() #transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=64, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor() #transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=1000, shuffle=True, **kwargs) model = None if config.arch == 'lenet_bn': model = LeNet_BN().to(device) elif config.arch == 'lenet': model = LeNet().to(device) elif config.arch == 'lenet_adv': model = LeNet_adv(w=config.width_multiplier).to(device) if config.arch not in model_names: raise Exception("unknown model architecture") ### for initialization experiments for name,W in model.named_parameters(): if 'conv' in name and 'bias' not in name: print ('initialization uniform') #W.data = torch.nn.init.uniform_(W.data) W.data = init.init(W.data) model = AttackPGD(model,config) #### loading initialization ''' ### for lottery tickets experiments read_dict = np.load('lenet_adv_retrained_w16_1_cut.pt_init.npy').item() for name,W in model.named_parameters(): if name not in read_dict: continue print (name) #print ('{} has shape {}'.format(name,read_dict[name].shape)) print (read_dict[name].shape) W.data = torch.from_numpy(read_dict[name]) ''' config.model = model if config.load_model: # unlike resume, load model does not care optimizer status or start_epoch print('==> Loading from {}'.format(config.load_model)) config.model.load_state_dict(torch.load(config.load_model, map_location=lambda storage, loc: storage)) #config.model.load_state_dict(torch.load(config.load_model,map_location = {'cuda:0':'cuda:{}'.format(config.gpu)})) torch.cuda.set_device(config.gpu) config.model.cuda(config.gpu) test(config, device, test_loader) ADMM = None config.prepare_pruning() if config.admm: ADMM = admm.ADMM(config) optimizer = None if (config.optimizer == 'sgd'): optimizer = torch.optim.SGD(config.model.parameters(), config.lr, momentum=0.9, weight_decay=1e-6) elif (config.optimizer =='adam'): optimizer = torch.optim.Adam(config.model.parameters(),config.lr) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=config.epochs*len(train_loader),eta_min=4e-08) if config.resume: if os.path.isfile(config.resume): checkpoint = torch.load(config.resume) config.start_epoch = checkpoint['epoch'] best_adv_acc = checkpoint['best_adv_acc'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})" .format(config.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(config.resume)) if config.masked_retrain: # make sure small weights are pruned and confirm the acc print ("<============masking both weights and gradients for retrain") admm.masking(config) print ("<============testing sparsity before retrain") admm.test_sparsity(config) test(config, device, test_loader) if config.masked_progressive: admm.zero_masking(config) for epoch in range(0, config.epochs+1): if config.admm: admm.admm_adjust_learning_rate(optimizer, epoch, config) else: if config.lr_scheduler == 'cosine': scheduler.step() elif config.lr_scheduler == 'sgd': if epoch == 20: config.lr/=10 for param_group in optimizer.param_groups: param_group['lr'] = config.lr else: pass # it uses adam train(config,ADMM,device, train_loader, optimizer, epoch) test(config, device, test_loader) admm.test_sparsity(config) test(config, device, test_loader) if config.save_model and config.admm: print ('saving model {}'.format(config.save_model)) torch.save(config.model.state_dict(),config.save_model)