Beispiel #1
0
def describe_studie(args):
  client = AdvisorClient()
  study = client.get_study_by_name(args.study_name)

  # Print study
  table = PrettyTable()
  table.field_names = [
      "Id", "Name", "Algorithm", "Status", "Create", "Updated"
  ]
  table.add_row([
      study.id, study.name, study.algorithm, study.status, study.created_time,
      study.updated_time
  ])
  print(table)

  # Print study configuration
  """
  table = PrettyTable()
  table.field_names = ["Configuration"]
  table.add_row([study.study_configuration])
  print(table)
  """
  pprint.pprint(json.loads(study.study_configuration))

  # Print related trials
  study_trials = client.list_trials(args.study_name)
  if (len(study_trials)) > 0:
    print_trials_as_table(study_trials)
Beispiel #2
0
def main(_):
    curr_dir = os.path.abspath(os.path.dirname(__file__))
    train_path = os.path.join(
        curr_dir, '../../preprocess/output/train_shuffle_' +
        str(FLAGS.thresh_hold) + '.csv')
    valid_path = os.path.join(
        curr_dir,
        '../../preprocess/output/valid_raw_' + str(FLAGS.thresh_hold) + '.csv')

    warm_start_dir = os.path.join(curr_dir, 'logdir')
    train_input_fn = get_input_fn(train_path, 4096, 1, 10000)
    valid_input_fn = get_input_fn(valid_path, 4096, 1, 10000)

    client = AdvisorClient()

    alpha_list = [0.00001, 0.0001, 0.001, 0.01]
    params = {'alpha': 0, 'feature_dim': get_feature_dim(FLAGS.thresh_hold)}
    # ws = tf.estimator.WarmStartSettings(
    #     ckpt_to_initialize_from=warm_start_dir,
    #     vars_to_warm_start=".*input_layer.*")
    ws = None
    for alpha in alpha_list:
        params['alpha'] = alpha
        model_dir = os.path.join(curr_dir, 'logdir_s' + str(alpha))
        model = MyModel(model_dir=model_dir, params=params, warm_start_from=ws)
        for _ in range(3):
            model.train(input_fn=train_input_fn)
            model.evaluate(input_fn=valid_input_fn)
Beispiel #3
0
def main(unused_argv):

    client = AdvisorClient()

    with open(FLAGS.config, "r") as cfg:
        config = json.load(cfg)

    assert "study_name" in config, "The config needs a 'study_name' parameter (str)"
    study_name = config.pop("study_name")
    study_config = config.pop("hyper-parameter-config")
    algorithm = config.pop("algorithm")
    fixed_parameter_config = config.pop("fixed-parameter-config")
    exp_dir = config.pop("study_dir")

    if not os.path.isdir(os.path.join(exp_dir, study_name)):
        os.mkdir(os.path.join(exp_dir, study_name))

    assert algorithm in ALGORITHMS, "algorithm {} is not supported. Select one of {}".format(
        algorithm, ", ".join([algo for algo in ALGORITHMS]))

    study = client.get_or_create_study(study_name=study_name,
                                       study_configuration=study_config)
    print(study)

    max_trials = study_config["maxTrials"]
    for i in range(max_trials):
        trial = client.get_suggestions(study.name, 1)[0]
        parameter_value_dict = json.loads(trial.parameter_values)

        parameter_value_dict["skip_gru_units"] = int(
            parameter_value_dict["skip_gru_units"])
        parameter_value_dict["gru_units"] = int(
            parameter_value_dict["gru_units"])
        parameter_value_dict["cnn_batch_normalization"] = int(
            parameter_value_dict["cnn_batch_normalization"])

        merged_config = {**fixed_parameter_config, **parameter_value_dict}

        while os.path.isdir(
                os.path.join(exp_dir, study_name, "trial_{}".format(i))):
            i += 1
        os.mkdir(os.path.join(exp_dir, study_name, "trial_{}").format(i))
        merged_config["model_dir"] = os.path.join(exp_dir, study_name,
                                                  "trial_{}".format(i))
        manager = Manager(**merged_config)
        ret = manager.run()
        corr_score = ret["corr"]
        rmse_score = ret["rmse"]
        metric = rmse_score + (1 - corr_score)
        trial = client.complete_trial_with_one_metric(trial, metric)
        print(trial)

    best_trial = client.get_best_trial(study.name)
    print("Best trial: {}".format(best_trial))
Beispiel #4
0
def main():
    client = AdvisorClient()

    # Create the study
    name = "Study"
    study_configuration = {
        "goal":
        "MINIMIZE",
        "maxTrials":
        5,
        "maxParallelTrials":
        1,
        "params": [{
            "parameterName": "learning_rate",
            "type": "INTEGER",
            "minValue": 0.01,
            "maxValue": 0.1,
            "scallingType": "LINEAR"
        }]
    }
    study = client.create_study(name, study_configuration)

    # Get suggested trials
    trials = client.get_suggestions(study.id, 3)

    # Generate command-line parameters
    commandline_parameters = []
    i = 0
    for trial in trials:
        parameter = "--output_path=output/{}".format(i)
        parameter_value_dict = json.loads(trial.parameter_values)

        # Example: {"learning_rate": 0.05943265431983244}
        for k, v in parameter_value_dict.items():
            parameter += " --{}={}".format(k, v)

        print(parameter)
        commandline_parameters.append(parameter)
        i += 1

    # Run training
    for i in range(3):
        module_args = commandline_parameters[i]
        module_name = "trainer.task"
        # Example: python -m trainer.task --output_path=0 --learning_rate=0.0796523079087
        shell_command = "python -m {} {}".format(module_name, module_args)
        print(shell_command)
        subprocess.call(shell_command, shell=True)

    # Complete the trial
    for i in range(3):
        trial = trials[i]
        logdir = "output/{}".format(i)
        tensorboard_metrics = tensorboard_util.get_hyperparameters_metric(
            logdir)
        client.complete_trial(trial, tensorboard_metrics)

    # Check if study done
    is_done = client.is_study_done(study.id)
    best_trial = client.get_best_trial(study.id)
    print("The study: {}, if it is done: {}, best trial: {}".format(
        study, is_done, best_trial))
Beispiel #5
0
  def run(self):
    client = AdvisorClient()

    self.run_config_dict

    # TODO: move the logic into local runner
    runner = LocalRunner()
    if "runner" in self.run_config_dict:
      if self.run_config_dict["runner"] == "local_runner":
        runner = LocalRunner()
        logging.info("Run with local runner")

    study_name = self.run_config_dict["name"].encode("utf-8")
    study = client.get_or_create_study(study_name,
                                       self.run_config_dict["search_space"],
                                       self.run_config_dict["algorithm"])

    logging.info("Create study: {}".format(study))

    for i in range(self.run_config_dict["trialNumber"]):

      logging.info("-------------------- Start Trial --------------------")

      # Get suggested trials
      trials = client.get_suggestions(study.name, 1)

      logging.info("Get trial: {}".format(trials[0]))

      #import ipdb;ipdb.set_trace()

      # Generate parameters
      parameter_value_dicts = []
      for trial in trials:
        parameter_value_dict = json.loads(trial.parameter_values)
        logging.info(
            "The suggested parameters: {}".format(parameter_value_dict))
        parameter_value_dicts.append(parameter_value_dict)

      # Run training

      for trial in trials:
        #metric = train_function(**parameter_value_dicts[i])

        # Example: {"gamma": 0.0063987614450157415}
        parameters_dict = json.loads(trials[0].parameter_values)
        parameter_string = ""

        for k, v in parameters_dict.items():
          parameter_string += " -{}={}".format(k, v)

        command_string = "cd {} && {} {}".format(
            self.run_config_dict["path"], self.run_config_dict["command"],
            parameter_string)

        #exit_code = subprocess.call(command_string, shell=True)
        logging.info("Run the command: {}".format(command_string))

        # Example: '0.0\n'
        # Example: 'Compute y = x * x - 3 * x + 2\nIput x is: 1.0\nOutput is: 0.0\n0.0\n'
        command_output = subprocess.check_output(command_string, shell=True)
        # TODO: Log the output in the directory
        #logging.info("Get output of command: {}".format(command_output))

        metric = float(command_output.split("\n")[-2].strip())
        # Complete the trial
        client.complete_trial_with_one_metric(trial, metric)
        logging.info("Update the trial with metrics: {}".format(metric))

      logging.info("--------------------- End Trial ---------------------")

    is_done = client.is_study_done(study.name)
    best_trial = client.get_best_trial(study.name)
    logging.info("The study: {}, best trial: {}".format(study, best_trial))
def main():
    client = AdvisorClient()

    model = MyModel()
    model.load_dataset()
    # Get or create the study
    study_configuration = {
        "goal":
        "MINIMIZE",
        "randomInitTrials":
        5,
        "maxTrials":
        30,
        "maxParallelTrials":
        1,
        "params": [
            {
                "parameterName": "max_bin",
                "type": "INTEGER",
                "minValue": 63,
                "maxValue": 511,
                "feasiblePoints": "",
                "scallingType": "LINEAR"
            },
            {
                "parameterName": "bin_construct_sample_cnt",
                "type": "INTEGER",
                "minValue": 3,
                "maxValue": 1000,
                "feasiblePoints": "",
                "scallingType": "LINEAR"
            },
            {
                "parameterName": "num_leaves",
                "type": "INTEGER",
                "minValue": 63,
                "maxValue": 512,
                "feasiblePoints": "",
                "scallingType": "LINEAR"
            },
            # {
            #     "parameterName": "lambda_l2",
            #     "type": "DOUBLE",
            #     "minValue": 0.0,
            #     "maxValue": 10.0,
            #     "feasiblePoints": "",
            #     "scallingType": "LINEAR"
            # },
            # {
            #     "parameterName": "lambda_l1",
            #     "type": "DOUBLE",
            #     "minValue": 0.0,
            #     "maxValue": 10.0,
            #     "feasiblePoints": "",
            #     "scallingType": "LINEAR"
            # },
            {
                "parameterName": "cat_l2",
                "type": "DOUBLE",
                "minValue": 1.0,
                "maxValue": 100.0,
                "feasiblePoints": "",
                "scallingType": "LINEAR"
            },
            {
                "parameterName": "cat_smooth",
                "type": "DOUBLE",
                "minValue": 1.0,
                "maxValue": 100.0,
                "feasiblePoints": "",
                "scallingType": "LINEAR"
            },
        ]
    }
    # study = client.create_study("lightgbm_search", study_configuration,
    #                           "BayesianOptimization")
    study = client.get_study_by_id(44)

    # Get suggested trials

    # trials = client.get_suggestions(study.id, 5)
    # for i in range(5):
    #     trial = trials[i]
    #     parameter_value_dict = json.loads(trial.parameter_values)
    #     logger.info("The suggested parameters: {}".format(parameter_value_dict))
    #     metric = model.train(**parameter_value_dict)
    #     client.complete_trial_with_one_metric(trial, metric)

    for i in range(30):
        # Get suggested trials
        trials = client.get_suggestions(study.id, 1)

        # Generate parameters
        parameter_value_dicts = []
        for trial in trials:
            parameter_value_dict = json.loads(trial.parameter_values)
            logger.info("The suggested parameters: {}".format(parameter_value_dict))
            parameter_value_dicts.append(parameter_value_dict)

        # Run training
        metrics = []
        for i in range(len(trials)):
            metric = model.train(**parameter_value_dicts[i])
            metrics.append(metric)

        # Complete the trial
        for i in range(len(trials)):
            trial = trials[i]
            client.complete_trial_with_one_metric(trial, metrics[i])
        is_done = client.is_study_done(study.id)
        assert is_done
        best_trial = client.get_best_trial(study.id)
        logger.info("The study: {}, best trial: {}".format(study, best_trial))
Beispiel #7
0
def list_trials(args):
  client = AdvisorClient()
  print_trials(client.list_trials(args.study_id))
Beispiel #8
0
def main(train_function):
  client = AdvisorClient()

  # Get or create the study
  study_configuration = {
      "goal":
      "MINIMIZE",
      "randomInitTrials":
      1,
      "maxTrials":
      5,
      "maxParallelTrials":
      1,
      "params": [{
          "parameterName":
          "operation_name1",
          "type":
          "CATEGORICAL",
          "minValue":
          0,
          "maxValue":
          0,
          "feasiblePoints":
          "Fliplr, Crop, GaussianBlur, ContrastNormalization, AdditiveGaussianNoise, Multiply",
          "scallingType":
          "LINEAR"
      }, {
          "parameterName": "magnitude1",
          "type": "INTEGER",
          "minValue": 1,
          "maxValue": 11,
          "scallingType": "LINEAR"
      }, {
          "parameterName": "probability1",
          "type": "INTEGER",
          "minValue": 1,
          "maxValue": 10,
          "scallingType": "LINEAR"
      }, {
          "parameterName":
          "operation_name2",
          "type":
          "CATEGORICAL",
          "minValue":
          0,
          "maxValue":
          0,
          "feasiblePoints":
          "Fliplr, Crop, GaussianBlur, ContrastNormalization, AdditiveGaussianNoise, Multiply",
          "scallingType":
          "LINEAR"
      }, {
          "parameterName": "magnitude2",
          "type": "INTEGER",
          "minValue": 1,
          "maxValue": 11,
          "scallingType": "LINEAR"
      }, {
          "parameterName": "probability2",
          "type": "INTEGER",
          "minValue": 1,
          "maxValue": 10,
          "scallingType": "LINEAR"
      }, {
          "parameterName":
          "operation_name3",
          "type":
          "CATEGORICAL",
          "minValue":
          0,
          "maxValue":
          0,
          "feasiblePoints":
          "Fliplr, Crop, GaussianBlur, ContrastNormalization, AdditiveGaussianNoise, Multiply",
          "scallingType":
          "LINEAR"
      }, {
          "parameterName": "magnitude3",
          "type": "INTEGER",
          "minValue": 1,
          "maxValue": 11,
          "scallingType": "LINEAR"
      }, {
          "parameterName": "probability3",
          "type": "INTEGER",
          "minValue": 1,
          "maxValue": 10,
          "scallingType": "LINEAR"
      }]
  }
  #study = client.create_study("Study", study_configuration, "BayesianOptimization")
  study = client.create_study("Study", study_configuration,
                              "RandomSearchAlgorithm")
  #study = client.get_study_by_id(6)

  # Get suggested trials
  trials = client.get_suggestions(study.id, 3)

  #import ipdb;ipdb.set_trace()

  # Generate parameters
  parameter_value_dicts = []
  for trial in trials:
    parameter_value_dict = json.loads(trial.parameter_values)
    print("The suggested parameters: {}".format(parameter_value_dict))
    parameter_value_dicts.append(parameter_value_dict)

  # Run training
  metrics = []
  for i in range(len(trials)):
    metric = train_function(**parameter_value_dicts[i])
    #metric = train_function(parameter_value_dicts[i])
    metrics.append(metric)

    trial = trials[i]
    # Complete the trial
    client.complete_trial_with_one_metric(trial, metrics[i])

  is_done = client.is_study_done(study.id)
  best_trial = client.get_best_trial(study.id)
  print("The study: {}, best trial: {}".format(study, best_trial))
Beispiel #9
0
#!/usr/bin/env python

import json

from advisor_client.model import Study
from advisor_client.model import Trial
from advisor_client.model import TrialMetric
from advisor_client.client import AdvisorClient

client = AdvisorClient()

# Create Study
name = "Study"
maxTrials = 20
study_configuration = {
    #"goal":
    # "MAXIMIZE",
    "goal":
    "MINIMIZE",
    "maxTrials":
    maxTrials,
    "maxParallelTrials":
    1,
    "randomInitTrials":
    10,
    "params": [{
        "parameterName": "x",
        "type": "DOUBLE",
        "minValue": -10,
        "maxValue": 10,
        "scallingType": "LINEAR"
Beispiel #10
0
def main(train_function):
    client = AdvisorClient()

    # Get or create the study
    study_configuration = {
        "goal":
        "MINIMIZE",
        "randomInitTrials":
        1,
        "maxTrials":
        5,
        "maxParallelTrials":
        1,
        "params": [
            {
                "parameterName": "filter_number0",
                "type": "INTEGER",
                "minValue": 16,
                "maxValue": 32,
                "feasiblePoints": "",
                "scalingType": "LINEAR"
            },
            {
                "parameterName": "convolution_kernel_size0",
                "type": "INTEGER",
                "minValue": 3,
                "maxValue": 5,
                "feasiblePoints": "",
                "scalingType": "LINEAR"
            },
            {
                "parameterName": "max_polling_size0",
                "type": "INTEGER",
                "minValue": 2,
                "maxValue": 3,
                "feasiblePoints": "",
                "scalingType": "LINEAR"
            },
            {
                "parameterName": "filter_number1",
                "type": "INTEGER",
                "minValue": 16,
                "maxValue": 32,
                "feasiblePoints": "",
                "scalingType": "LINEAR"
            },
            {
                "parameterName": "convolution_kernel_size1",
                "type": "INTEGER",
                "minValue": 3,
                "maxValue": 5,
                "feasiblePoints": "",
                "scalingType": "LINEAR"
            },
            {
                "parameterName": "max_polling_size1",
                "type": "INTEGER",
                "minValue": 2,
                "maxValue": 3,
                "feasiblePoints": "",
                "scalingType": "LINEAR"
            },
        ]
    }
    #study = client.create_study("Study", study_configuration, "BayesianOptimization")
    study = client.create_study("Study", study_configuration,
                                "RandomSearchAlgorithm")
    #study = client.get_study_by_id(6)

    # Get suggested trials
    trials = client.get_suggestions(study.id, 3)

    #import ipdb;ipdb.set_trace()

    # Generate parameters
    parameter_value_dicts = []
    for trial in trials:
        parameter_value_dict = json.loads(trial.parameter_values)
        print("The suggested parameters: {}".format(parameter_value_dict))
        parameter_value_dicts.append(parameter_value_dict)

    # Run training
    metrics = []
    for i in range(len(trials)):
        metric = train_function(**parameter_value_dicts[i])
        #metric = train_function(parameter_value_dicts[i])
        metrics.append(metric)

        trial = trials[i]
        # Complete the trial
        client.complete_trial_with_one_metric(trial, metrics[i])

    is_done = client.is_study_done(study.id)
    best_trial = client.get_best_trial(study.id)
    print("The study: {}, best trial: {}".format(study, best_trial))
Beispiel #11
0
def list_trials(args):
  client = AdvisorClient()
  print_trials_as_table(client.list_trials(args.study_name))
Beispiel #12
0
def list_trials(args):
  client = AdvisorClient()
  print_trials(client.list_trials(args.study_id))
Beispiel #13
0
def list_studies(args):
  client = AdvisorClient()
  print_studies(client.list_studies())
Beispiel #14
0
def main(train_function):
    client = AdvisorClient()

    # Get or create the study
    study_configuration = {
        "goal":
        "MINIMIZE",
        "randomInitTrials":
        1,
        "maxTrials":
        5,
        "maxParallelTrials":
        1,
        "params": [
            {
                "parameterName": "gamma",
                "type": "DOUBLE",
                "minValue": 0.001,
                "maxValue": 0.01,
                "feasiblePoints": "",
                "scalingType": "LINEAR"
            },
            {
                "parameterName": "C",
                "type": "DOUBLE",
                "minValue": 0.5,
                "maxValue": 1.0,
                "feasiblePoints": "",
                "scalingType": "LINEAR"
            },
            {
                "parameterName": "kernel",
                "type": "CATEGORICAL",
                "minValue": 0,
                "maxValue": 0,
                "feasiblePoints": "linear, poly, rbf, sigmoid, precomputed",
                "scalingType": "LINEAR"
            },
            {
                "parameterName": "coef0",
                "type": "DOUBLE",
                "minValue": 0.0,
                "maxValue": 0.5,
                "feasiblePoints": "",
                "scalingType": "LINEAR"
            },
        ]
    }
    study = client.create_study("Study", study_configuration,
                                "BayesianOptimization")
    #study = client.get_study_by_id(6)

    num_trials = 20
    for i in range(num_trials):
        # Get suggested trials
        trials = client.get_suggestions(study.name, 3)

        # Generate parameters
        parameter_value_dicts = []
        for trial in trials:
            parameter_value_dict = json.loads(trial.parameter_values)
            print("The suggested parameters: {}".format(parameter_value_dict))
            parameter_value_dicts.append(parameter_value_dict)

        # Run training
        metrics = []
        for i in range(len(trials)):
            metric = train_function(**parameter_value_dicts[i])
            #metric = train_function(parameter_value_dicts[i])
            metrics.append(metric)

        # Complete the trial
        for i in range(len(trials)):
            trial = trials[i]
            client.complete_trial_with_one_metric(trial, metrics[i])
    is_done = client.is_study_done(study.name)
    best_trial = client.get_best_trial(study.name)
    print("The study: {}, best trial: {}".format(study, best_trial))
    print(best_trial.parameter_values)
Beispiel #15
0
def main(train_function):
  client = AdvisorClient()

  # Get or create the study
  study_configuration = {
      "goal":
      "MINIMIZE",
      "randomInitTrials":
      1,
      "maxTrials":
      5,
      "maxParallelTrials":
      1,
      "params": [
          {
              "parameterName": "gamma",
              "type": "DOUBLE",
              "minValue": 0.001,
              "maxValue": 0.01,
              "feasiblePoints": "",
              "scallingType": "LINEAR"
          },
          {
              "parameterName": "C",
              "type": "DOUBLE",
              "minValue": 0.5,
              "maxValue": 1.0,
              "feasiblePoints": "",
              "scallingType": "LINEAR"
          },
          {
              "parameterName": "kernel",
              "type": "CATEGORICAL",
              "minValue": 0,
              "maxValue": 0,
              "feasiblePoints": "linear, poly, rbf, sigmoid, precomputed",
              "scallingType": "LINEAR"
          },
          {
              "parameterName": "coef0",
              "type": "DOUBLE",
              "minValue": 0.0,
              "maxValue": 0.5,
              "feasiblePoints": "",
              "scallingType": "LINEAR"
          },
      ]
  }
  study = client.create_study("Study", study_configuration,
                              "BayesianOptimization")
  #study = client.get_study_by_id(6)

  # Get suggested trials
  trials = client.get_suggestions(study.id, 3)

  # Generate parameters
  parameter_value_dicts = []
  for trial in trials:
    parameter_value_dict = json.loads(trial.parameter_values)
    print("The suggested parameters: {}".format(parameter_value_dict))
    parameter_value_dicts.append(parameter_value_dict)

  # Run training
  metrics = []
  for i in range(len(trials)):
    metric = train_function(**parameter_value_dicts[i])
    #metric = train_function(parameter_value_dicts[i])
    metrics.append(metric)

  # Complete the trial
  for i in range(len(trials)):
    trial = trials[i]
    client.complete_trial_with_one_metric(trial, metrics[i])
  is_done = client.is_study_done(study.id)
  best_trial = client.get_best_trial(study.id)
  print("The study: {}, best trial: {}".format(study, best_trial))
Beispiel #16
0
#!/usr/bin/env python

from advisor_client.model import Study
from advisor_client.model import Trial
from advisor_client.model import TrialMetric
from advisor_client.client import AdvisorClient

client = AdvisorClient()

# Create Study
name = "Study"
study_configuration = {
    "goal":
    "MAXIMIZE",
    "maxTrials":
    5,
    "maxParallelTrials":
    1,
    "params": [{
        "parameterName": "hidden1",
        "type": "INTEGER",
        "minValue": 40,
        "maxValue": 400,
        "scalingType": "LINEAR"
    }]
}

study = client.create_study(name, study_configuration)
print(study)
print(client.list_studies())
Beispiel #17
0
def list_studies(args):
  client = AdvisorClient()
  print_studies(client.list_studies())
Beispiel #18
0
def main(train_function):
    client = AdvisorClient()

    # Get or create the study
    study_configuration = {
        "goal":
        "MINIMIZE",
        "randomInitTrials":
        3,
        "maxTrials":
        5,
        "maxParallelTrials":
        1,
        "params": [
            {
                "parameterName": "min_child_weight",
                "type": "INTEGER",
                "minValue": 1,
                "maxValue": 20,
                "feasiblePoints": "",
                "scallingType": "LINEAR"
            },
            {
                "parameterName": "max_depth",
                "type": "INTEGER",
                "minValue": 5,
                "maxValue": 15,
                "feasiblePoints": "",
                "scallingType": "LINEAR"
            },
            {
                "parameterName": "gamma",
                "type": "DOUBLE",
                "minValue": 0.0,
                "maxValue": 10.0,
                "feasiblePoints": "",
                "scallingType": "LINEAR"
            },
            {
                "parameterName": "alpha",
                "type": "DOUBLE",
                "minValue": 0.0,
                "maxValue": 10.0,
                "feasiblePoints": "",
                "scallingType": "LINEAR"
            },
        ]
    }
    study = client.create_study("Study", study_configuration,
                                "BayesianOptimization")
    #study = client.get_study_by_id(21)

    # Get suggested trials
    trials = client.get_suggestions(study.id, 3)

    # Generate parameters
    parameter_value_dicts = []
    for trial in trials:
        parameter_value_dict = json.loads(trial.parameter_values)
        print("The suggested parameters: {}".format(parameter_value_dict))
        parameter_value_dicts.append(parameter_value_dict)

    # Run training
    metrics = []
    for i in range(len(trials)):
        metric = train_function(**parameter_value_dicts[i])
        metrics.append(metric)

    # Complete the trial
    for i in range(len(trials)):
        trial = trials[i]
        client.complete_trial_with_one_metric(trial, metrics[i])
    is_done = client.is_study_done(study.id)
    best_trial = client.get_best_trial(study.id)
    print("The study: {}, best trial: {}".format(study, best_trial))
Beispiel #19
0
#!/usr/bin/env python

from advisor_client.model import Study
from advisor_client.model import Trial
from advisor_client.model import TrialMetric
from advisor_client.client import AdvisorClient

client = AdvisorClient()

# Create Study
name = "Study"
study_configuration = {
    "goal":
    "MAXIMIZE",
    "maxTrials":
    5,
    "maxParallelTrials":
    1,
    "params": [{
        "parameterName": "hidden1",
        "type": "INTEGER",
        "minValue": 40,
        "maxValue": 400,
        "scallingType": "LINEAR"
    }]
}

study = client.create_study(name, study_configuration)
print(study)
print(client.list_studies())