def train(self, counter=1, gen_dirs=()):
        if self.conf.need_to_load:
            self.load(self.conf.checkpoint_dir, step=counter)

        data = self.data
        logger.info('Total amount of images: %s' % len(data))
        # np.random.shuffle(data)

        tf.initialize_all_variables().run()

        # counter = 1
        start_time = time.time()
        batch_idxs = min(len(data), self.conf.train_size) / self.conf.batch_size

        stego_accuracy = 0

        accuracies = []
        accuracies_steps = []

        logger.debug('Starting updating')
        for epoch in range(self.conf.epoch):
            losses = []

            np.random.shuffle(data)

            logger.info('Starting epoch %s' % epoch)

            for idx in range(0, int(batch_idxs)):
                batch_files = data[idx * self.conf.batch_size:(idx + 1) * self.conf.batch_size]
                batch = [get_image(batch_file, self.conf.image_size)
                         for batch_file in batch_files]
                batch_images = np.array(batch).astype(np.float32)

                batch_targets = self.get_targets(batch_files)

                self.sess.run(self.optimize, feed_dict={self.images: batch_images, self.target: batch_targets})
                loss = self.loss.eval({self.images: batch_images, self.target: batch_targets})

                losses.append(loss)

                # logger.debug("[ITERATION] Epoch [%2d], iteration [%4d/%4d] time: %4.4f, Loss: %8f, accuracy: %8f" %
                #              (epoch, idx, batch_idxs, time.time() - start_time, loss, stego_accuracy))

                counter += 1

                if counter % 300 == 0:
                    logger.info('------')

                    stego_accuracy = self.accuracy(n_files=-1, test_dir=self.test_dir)
                    logger.info('[TEST] Epoch {:2d} accuracy: {:3.1f}%'.format(epoch + 1, 100 * stego_accuracy))

                    for gen_dir in gen_dirs:
                        gen_accuracy = self.accuracy(n_files=-1, test_dir=gen_dir)
                        logger.info('[GEN_TEST] Folder {}, accuracy: {:3.1f}%'.format(gen_dir, 100 * gen_accuracy))
Beispiel #2
0
    def save(self, checkpoint_dir, step):

        model_dir = "%s_%s" % (self.conf.model_name, self.conf.batch_size)
        checkpoint_dir = os.path.join(checkpoint_dir, model_dir)

        if not os.path.exists(checkpoint_dir):
            os.makedirs(checkpoint_dir)

        ckpt_name = '%s_%s.ckpt' % (self.conf.model_name, step)

        logger.info('[SAVING] step: %s, name: %s' % (step, ckpt_name))
        self.saver.save(self.sess, os.path.join(checkpoint_dir, ckpt_name), global_step=step)
def main(_):
    logger.info('====================================================')
    logger.info('===================NEW EXPERIMENT===================')
    logger.info('====================================================')

    logger.info(flags.FLAGS.__flags)

    if not os.path.exists(FLAGS.checkpoint_dir):
        os.makedirs(FLAGS.checkpoint_dir)
    if not os.path.exists(FLAGS.sample_dir):
        os.makedirs(FLAGS.sample_dir)

    with tf.Session() as sess:
        steganalisys = Steganalyzer(config=FLAGS,
                                    sess=sess,
                                    stego_algorithm=LSBMatching)

        # dirs = [
        #         '/home/dvolkhonskiy/SGAN/code/data/10_seeds/test',
        #         '/home/dvolkhonskiy/SGAN/code/data/10_seeds/other_seeds',
        #         '/home/dvolkhonskiy/SGAN/code/data/10_seeds/more_train',
        #         '/home/dvolkhonskiy/SGAN/code/data/10_seeds/more_train_other_seeds',
        #     ]

        # dirs = [
        #     '/home/dvolkhonskiy/SGAN/code/data/overtraining/plus_0',
        #     '/home/dvolkhonskiy/SGAN/code/data/overtraining/plus_1',
        #     '/home/dvolkhonskiy/SGAN/code/data/overtraining/plus_2',
        #     '/home/dvolkhonskiy/SGAN/code/data/overtraining/plus_3',
        #     '/home/dvolkhonskiy/SGAN/code/data/overtraining/plus_4',
        #     '/home/dvolkhonskiy/SGAN/code/data/overtraining/plus_5',
        #     '/home/dvolkhonskiy/SGAN/code/data/overtraining/plus_6',
        #     '/home/dvolkhonskiy/SGAN/code/data/overtraining/plus_7',
        #     '/home/dvolkhonskiy/SGAN/code/data/overtraining/plus_8',
        #     '/home/dvolkhonskiy/SGAN/code/data/overtraining/plus_9',
        # ]

        dirs = [
            '/home/dvolkhonskiy/SGAN/code/data/overtraining/plus_%s' % i
            for i in range(0, 66)
        ]

        if FLAGS.is_train:
            steganalisys.train(counter=1, gen_dirs=dirs)
        else:
            # steganalisys.load(FLAGS.checkpoint_dir, step=28481) # LSB matching clf
            steganalisys.load(FLAGS.checkpoint_dir, step=59)

            for gen_dir in dirs:
                acc, std = steganalisys.accuracy(n_files=-1, test_dir=gen_dir)
                logger.info('[GEN_TEST] Folder %s, accuracy: %.4f, std: %.4f' %
                            (gen_dir, acc, std))
Beispiel #4
0
    def load(self, checkpoint_dir, step):
        model_dir = "%s_%s" % (self.conf.model_name, self.conf.batch_size)
        checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
        try:
            ckpt_name = '%s_%s.ckpt-%s' % (self.conf.model_name, step, step)

            logger.info('[LOADING] step: %s, name: %s' % (step, ckpt_name))
            self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
        except Exception as e:
            logger.debug(e)
            ckpt_name = 'StegoDCGAN-%s' % (step)

            logger.info('[LOADING] step: %s, name: %s' % (step, ckpt_name))
            self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
    def accuracy(self, test_dir='test', abs=False, n_files=2 ** 12):
        logger.info('[TEST], test data folder: %s, n_files: %s' % (test_dir, 2 * n_files))
        X_test = self.get_images_names('%s/*.%s' % (test_dir, self.conf.img_format), abs=abs)[:n_files]

        accuracies = []

        batch_idxs = min(len(X_test), self.conf.train_size) / self.conf.batch_size

        # logger.debug('Starting iteration')
        for idx in range(0, int(batch_idxs)):
            batch_files_stego = X_test[idx * self.conf.batch_size:(idx + 1) * self.conf.batch_size]
            batch = [get_image(batch_file, self.conf.image_size) for batch_file in batch_files_stego]
            batch_images = np.array(batch).astype(np.float32)

            batch_targets = self.get_targets(batch_files_stego)

            accuracies.append(self.get_accuracy(batch_images, batch_targets))

        return np.mean(accuracies)
Beispiel #6
0
    def train(self, counter=1, gen_dirs=()):
        if self.conf.need_to_load:
            self.load(self.conf.checkpoint_dir, step=counter)

        data = self.data
        logger.info('Total amount of images: %s' % len(data))
        # np.random.shuffle(data)

        tf.initialize_all_variables().run()

        # counter = 1
        start_time = time.time()
        batch_idxs = min(len(data),
                         self.conf.train_size) / self.conf.batch_size

        logger.debug('Starting updating')
        for epoch in range(self.conf.epoch):
            losses = []

            np.random.shuffle(data)

            logger.info('Starting epoch %s' % epoch)

            for idx in range(0, int(batch_idxs)):
                batch_files = data[idx * self.conf.batch_size:(idx + 1) *
                                   self.conf.batch_size]
                batch = [
                    get_image(batch_file, self.conf.image_size)
                    for batch_file in batch_files
                ]
                batch_images = np.array(batch).astype(np.float32)

                batch_targets = self.get_targets(batch_files)

                _, loss = self.sess.run([self.optimize, self.loss],
                                        feed_dict={
                                            self.images: batch_images,
                                            self.target: batch_targets
                                        })

                losses.append(loss)

                # logger.debug("[ITERATION] Epoch [%2d], iteration [%4d/%4d] time: %4.4f, Loss: %8f, accuracy: %8f" %
                #              (epoch, idx, batch_idxs, time.time() - start_time, loss, stego_accuracy))

                counter += 1

            if epoch % 5 == 0 and epoch > 0:
                for gen_dir in gen_dirs:
                    acc, std = self.accuracy(n_files=-1, test_dir=gen_dir)
                    logger.info(
                        '[GEN_TEST] Folder %s, accuracy: %.4f, std: %.4f' %
                        (gen_dir, acc, std))

            # SAVE after each epoch
            self.save(self.conf.checkpoint_dir, epoch)
def main(_):
    logger.info('====================================================')
    logger.info('===================NEW EXPERIMENT===================')
    logger.info('====================================================')

    logger.info(flags.FLAGS.__flags)

    if not os.path.exists(FLAGS.checkpoint_dir):
        os.makedirs(FLAGS.checkpoint_dir)
    if not os.path.exists(FLAGS.sample_dir):
        os.makedirs(FLAGS.sample_dir)

    with tf.Session() as sess:
        dcgan = SGAN(sess, LSBMatching, config=FLAGS,
                     image_size=FLAGS.image_size,
                     batch_size=FLAGS.batch_size)

        dcgan.load(FLAGS.checkpoint_dir, 4) # 18990 22155 25320 28485 31650

        n_batches = 1999

        for i in range(n_batches):
            if i % 100 == 0:
                print('Iteration', i)

            z_sample = np.random.uniform(-1, 1, size=(FLAGS.batch_size, dcgan.z_dim))
            samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample})
            save_images(samples, i, folder='./data/overtraining/')

        for chpt_i, chpt in enumerate(range(4, 70, 1)): # [18990, 22155, 25320, 28485, 31650]

            dcgan.load(FLAGS.checkpoint_dir, chpt)
            n_batches = 199

            for i in range(n_batches):
                if i % 100 == 0:
                    print('Iteration', i)

                z_sample = np.random.uniform(-1, 1, size=(FLAGS.batch_size, dcgan.z_dim))
                samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample})
                folder = './data/overtraining/plus_%s' % (chpt_i)
                if not os.path.exists(folder):
                    os.makedirs(folder)
                save_images(samples, i, folder=folder)
Beispiel #8
0
def main(_):
    logger.info('====================================================')
    logger.info('===================NEW EXPERIMENT===================')
    logger.info('====================================================')

    logger.info(flags.FLAGS.__flags)

    if not os.path.exists(FLAGS.checkpoint_dir):
        os.makedirs(FLAGS.checkpoint_dir)
    if not os.path.exists(FLAGS.sample_dir):
        os.makedirs(FLAGS.sample_dir)

    with tf.Session() as sess:
        dcgan = SGAN(sess,
                     LSBMatching,
                     config=FLAGS,
                     image_size=FLAGS.image_size,
                     batch_size=FLAGS.batch_size)

        if FLAGS.is_train:
            dcgan.train()
        else:
            dcgan.load(FLAGS.checkpoint_dir, 50400)  # 50400 50800

        n_batches = 200

        z_sample = np.random.uniform(-1,
                                     1,
                                     size=(FLAGS.batch_size, dcgan.z_dim))

        for i in range(n_batches):
            np.random.seed(int(time()))
            z_sample = np.random.uniform(-1,
                                         1,
                                         size=(FLAGS.batch_size, dcgan.z_dim))
            samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample})
            save_images(
                samples,
                i,
                folder='/home/dvolkhonskiy/datasets/new/sgan_generated')
def main(_):
    logger.info('====================================================')
    logger.info('===================NEW EXPERIMENT===================')
    logger.info('====================================================')

    logger.info(flags.FLAGS.__flags)

    if not os.path.exists(FLAGS.checkpoint_dir):
        os.makedirs(FLAGS.checkpoint_dir)
    if not os.path.exists(FLAGS.sample_dir):
        os.makedirs(FLAGS.sample_dir)

    with tf.Session() as sess:
        steganalisys = Steganalyzer(config=FLAGS, sess=sess, stego_algorithm=LSBMatching, stego_name='lsb_matching')

        if FLAGS.is_train:
            steganalisys.train(counter=1, gen_dirs=['gen_test_seed_666', 'gen_test_more_train'])
        else:
            # steganalisys.load(FLAGS.checkpoint_dir, step=28481) # LSB matching clf
            steganalisys.load(FLAGS.checkpoint_dir, step=122114)

        print('ACCURACY:::::::::%s' % steganalisys.accuracy(test_dir='gen_test_more_train', n_files=-1))
def main(_):
    logger.info('====================================================')
    logger.info('===================NEW EXPERIMENT===================')
    logger.info('====================================================')

    logger.info(flags.FLAGS.__flags)

    if not os.path.exists(FLAGS.checkpoint_dir):
        os.makedirs(FLAGS.checkpoint_dir)
    if not os.path.exists(FLAGS.sample_dir):
        os.makedirs(FLAGS.sample_dir)

    with tf.Session() as sess:
        dcgan = SGAN(sess,
                     LSBMatching,
                     config=FLAGS,
                     image_size=FLAGS.image_size,
                     batch_size=FLAGS.batch_size)

        if FLAGS.is_train:
            dcgan.train(start_epoch=0)
        else:
            dcgan.load(FLAGS.checkpoint_dir, 50400)  # 50400 50800