Beispiel #1
0
    def loaded_new_graph_from_file(self):
        file_types = ["AequilibraE graph(*.aeg)"]

        new_name, file_type = GetOutputFileName(self, 'Graph file', file_types,
                                                ".aeg", self.path)
        self.cb_minimizing.clear()
        self.cb_skims.clear()
        self.all_centroids.setText('')
        self.block_paths.setChecked(False)
        if new_name is not None:
            self.graph_file_name.setText(new_name)
            self.graph = Graph()
            self.graph.load_from_disk(new_name)

            self.all_centroids.setText(str(self.graph.centroids))
            if self.graph.block_centroid_flows:
                self.block_paths.setChecked(True)
            graph_fields = list(self.graph.graph.dtype.names)
            self.skimmeable_fields = [
                x for x in graph_fields if x not in [
                    'link_id',
                    'a_node',
                    'b_node',
                    'direction',
                    'id',
                ]
            ]

            for q in self.skimmeable_fields:
                self.cb_minimizing.addItem(q)
                self.cb_skims.addItem(q)
    def load_graph(self):
        self.lbl_graphfile.setText('')

        file_types = ["AequilibraE graph(*.aeg)"]
        default_type = '.aeg'
        box_name = 'Traffic Assignment'
        graph_file, type = GetOutputFileName(self, box_name, file_types, default_type, self.path)

        if graph_file is not None:
            self.graph.load_from_disk(graph_file)

            not_considering_list = self.graph.required_default_fields
            not_considering_list.pop(-1)
            not_considering_list.append('id')

            for i in list(self.graph.graph.dtype.names):
                if i not in not_considering_list:
                    self.minimizing_field.addItem(i)
            self.lbl_graphfile.setText(graph_file)
            self.results.prepare(self.graph)
            cores = get_parameter_chain(['system', 'cpus'])
            self.results.set_cores(cores)
        else:
            self.graph = Graph()
        self.change_status_for_path_file()
        self.set_behavior_special_analysis()
    def test_network_skimming(self):
        # graph
        g = Graph()
        g.load_from_disk(test_graph)
        g.set_graph(cost_field='distance', skim_fields=None)
        # None implies that only the cost field will be skimmed

        # skimming results
        res = SkimResults()
        res.prepare(g)

        aux_res = MultiThreadedNetworkSkimming()
        aux_res.prepare(g, res)
        a = skimming_single_origin(26, g, res, aux_res, 0)

        skm = NetworkSkimming(g, res)
        skm.execute()

        tot = np.nanmax(res.skims.distance[:, :])

        if tot > 10e10:
            self.fail('Skimming was not successful. At least one np.inf returned.')

        if skm.report:
            self.fail('Skimming returned an error:' + str(skm.report))
Beispiel #4
0
    def test_prepare_graph(self):
        self.test_create_from_geography()
        self.graph.prepare_graph(centroids)

        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)
        if not np.array_equal(self.graph.graph, reference_graph.graph):
            self.fail('Reference graph and newly-prepared graph are not equal')
Beispiel #5
0
    def test_prepare_graph(self):
        self.test_create_from_geography()
        self.graph.prepare_graph(centroids)

        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)
        if not np.array_equal(self.graph.graph, reference_graph.graph):
            self.fail("Reference graph and newly-prepared graph are not equal")
    def load_graph(self):
        self.lbl_graphfile.setText('')

        file_types = ["AequilibraE graph(*.aeg)"]
        default_type = '.aeg'
        box_name = 'Traffic Assignment'
        graph_file, _ = GetOutputFileName(self, box_name, file_types,
                                          default_type, self.path)

        if graph_file is not None:
            self.graph.load_from_disk(graph_file)

            fields = list(
                set(self.graph.graph.dtype.names) -
                set(self.graph.required_default_fields))
            self.minimizing_field.addItems(fields)
            self.update_skim_list(fields)
            self.lbl_graphfile.setText(graph_file)

            cores = get_parameter_chain(['system', 'cpus'])
            self.results.set_cores(cores)

            # show graph properties
            def centers_item(qt_item):
                cell_widget = QWidget()
                lay_out = QHBoxLayout(cell_widget)
                lay_out.addWidget(qt_item)
                lay_out.setAlignment(Qt.AlignCenter)
                lay_out.setContentsMargins(0, 0, 0, 0)
                cell_widget.setLayout(lay_out)
                return cell_widget

            items = [['Graph ID', self.graph.__id__],
                     ['Number of links', self.graph.num_links],
                     ['Number of nodes', self.graph.num_nodes],
                     ['Number of centroids', self.graph.num_zones]]

            self.graph_properties_table.clearContents()
            self.graph_properties_table.setRowCount(5)
            for i, item in enumerate(items):
                self.graph_properties_table.setItem(i, 0,
                                                    QTableWidgetItem(item[0]))
                self.graph_properties_table.setItem(
                    i, 1, QTableWidgetItem(str(item[1])))

            self.graph_properties_table.setItem(
                4, 0, QTableWidgetItem('Block flows through centroids'))
            self.block_centroid_flows = QCheckBox()
            self.block_centroid_flows.setChecked(
                self.graph.block_centroid_flows)
            self.graph_properties_table.setCellWidget(
                4, 1, centers_item(self.block_centroid_flows))
        else:
            self.graph = Graph()
        self.set_behavior_special_analysis()
Beispiel #7
0
    def test_prepare(self):
        # graph
        self.g = Graph()
        self.g.load_from_disk(test_graph)
        self.g.set_graph(cost_field='distance', skim_fields=None)

        self.r = PathResults()
        try:
            self.r.prepare(self.g)
        except:
            self.fail('Path result preparation failed')
Beispiel #8
0
    def build_graphs(self) -> None:
        """Builds graphs for all modes currently available in the model

        When called, it overwrites all graphs previously created and stored in the networks'
        dictionary of graphs
        """
        curr = self.conn.cursor()
        curr.execute('PRAGMA table_info(links);')
        field_names = curr.fetchall()

        ignore_fields = ['ogc_fid', 'geometry']
        all_fields = [f[1] for f in field_names if f[1] not in ignore_fields]

        raw_links = curr.execute(
            f"select {','.join(all_fields)} from links").fetchall()
        links = []
        for l in raw_links:
            lk = list(map(lambda x: np.nan if x is None else x, l))
            links.append(lk)

        data = np.core.records.fromrecords(links, names=all_fields)

        valid_fields = []
        removed_fields = []
        for f in all_fields:
            if np.issubdtype(data[f].dtype, np.floating) or np.issubdtype(
                    data[f].dtype, np.integer):
                valid_fields.append(f)
            else:
                removed_fields.append(f)
        if len(removed_fields) > 1:
            warn(
                f'Fields were removed form Graph for being non-numeric: {",".join(removed_fields)}'
            )

        curr.execute('select node_id from nodes where is_centroid=1;')
        centroids = np.array([i[0] for i in curr.fetchall()], np.uint32)

        modes = curr.execute('select mode_id from modes;').fetchall()
        modes = [m[0] for m in modes]

        for m in modes:
            w = np.core.defchararray.find(data['modes'], m)
            net = np.array(data[valid_fields], copy=True)
            net['b_node'][w < 0] = net['a_node'][w < 0]

            g = Graph()
            g.mode = m
            g.network = net
            g.network_ok = True
            g.status = 'OK'
            g.prepare_graph(centroids)
            g.set_blocked_centroid_flows(True)
            self.graphs[m] = g
    def setUp(self) -> None:
        # graph
        self.g = Graph()
        self.g.load_from_disk(test_graph)
        self.g.set_graph(cost_field="distance")

        self.r = PathResults()
        try:
            self.r.prepare(self.g)
        except Exception as err:
            self.fail("Path result preparation failed - {}".format(err.__str__()))
Beispiel #10
0
 def test_create_from_geography(self):
     self.graph = Graph()
     self.graph.create_from_geography(test_network,
                                      'link_id',
                                      'dir',
                                      'distance',
                                      centroids=centroids,
                                      skim_fields=[],
                                      anode="A_NODE",
                                      bnode="B_NODE")
     self.graph.set_graph(cost_field='distance', block_centroid_flows=True)
Beispiel #11
0
    def test_load_from_disk(self):
        self.test_save_to_disk()
        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)
        reference_graph.__version__ = binary_version

        new_graph = Graph()
        new_graph.load_from_disk(join(path_test, "aequilibrae_test_graph.aeg"))
    def test_skimming_single_origin(self):

        g = Graph()
        g.load_from_disk(test_graph)
        g.set_graph(cost_field="distance")
        g.set_skimming("distance")

        origin = np.random.choice(g.centroids[:-1], 1)[0]

        # skimming results
        res = SkimResults()
        res.prepare(g)
        aux_result = MultiThreadedNetworkSkimming()
        aux_result.prepare(g, res)

        a = skimming_single_origin(origin, g, res, aux_result, 0)
        tot = np.sum(res.skims.distance[origin, :])
        if tot > 10e10:
            self.fail(
                "Skimming was not successful. At least one np.inf returned for origin {}."
                .format(origin))

        if a != origin:
            self.fail("Skimming returned an error: {} for origin {}".format(
                a, origin))
Beispiel #13
0
    def test_network_skimming(self):
        # graph
        g = Graph()
        g.load_from_disk(test_graph)
        g.set_graph(cost_field="distance")
        g.set_skimming("distance")

        # skimming results
        res = SkimResults()
        res.prepare(g)

        aux_res = MultiThreadedNetworkSkimming()
        aux_res.prepare(g, res)
        _ = skimming_single_origin(26, g, res, aux_res, 0)

        skm = NetworkSkimming(g, res)
        skm.execute()

        tot = np.nanmax(res.skims.distance[:, :])

        if tot > 10e10:
            self.fail("Skimming was not successful. At least one np.inf returned.")

        if skm.report:
            self.fail("Skimming returned an error:" + str(skm.report))
    def __init__(self, iface):
        QDialog.__init__(self)
        QtGui.QDialog.__init__(self, None, QtCore.Qt.WindowStaysOnTopHint)
        self.iface = iface
        self.setupUi(self)
        self.field_types = {}
        self.centroids = None
        self.node_layer = None
        self.line_layer = None
        self.index = None
        self.graph = Graph()
        self.skimmeable_fields = None
        self.link_features = None
        self.link_layer = None
        self.link_id = None
        self.node_layer = None
        self.node_id = None
        self.node_fields = None
        self.node_keys = None
        self.error = None
        self.graph_ok = False

        self.load_graph_from_file.clicked.connect(
            self.loaded_new_graph_from_file)

        self.cb_node_layer.currentIndexChanged.connect(
            partial(self.load_fields_to_ComboBoxes, self.cb_node_layer,
                    self.cb_data_field, True))

        self.cb_link_layer.currentIndexChanged.connect(
            partial(self.load_fields_to_ComboBoxes, self.cb_link_layer,
                    self.cb_link_id_field, False))

        self.cb_link_id_field.currentIndexChanged.connect(
            self.clear_memory_layer)

        self.do_load_graph.clicked.connect(self.returns_configuration)

        # THIRD, we load layers in the canvas to the combo-boxes
        for layer in qgis.utils.iface.legendInterface().layers(
        ):  # We iterate through all layers
            if layer.wkbType() in point_types:
                self.cb_node_layer.addItem(layer.name())

            if layer.wkbType() in line_types:
                self.cb_link_layer.addItem(layer.name())

        # loads default path from parameters
        self.path = standard_path()
Beispiel #15
0
 def test_create_from_geography(self):
     self.graph = Graph()
     self.graph.create_from_geography(
         test_network,
         "link_id",
         "dir",
         "distance",
         centroids=centroids,
         skim_fields=[],
         anode="A_NODE",
         bnode="B_NODE",
     )
     self.graph.set_graph(cost_field="distance")
     self.graph.set_blocked_centroid_flows(block_centroid_flows=True)
     self.graph.set_skimming("distance")
    def test_prepare(self):
        # graph
        self.g = Graph()
        self.g.load_from_disk(test_graph)
        self.g.set_graph(cost_field='distance', skim_fields=None)

        self.r = PathResults()
        try:
            self.r.prepare(self.g)
        except:
            self.fail('Path result preparation failed')
Beispiel #17
0
    def test_load_from_disk(self):
        self.test_save_to_disk()
        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)

        new_graph = Graph()
        new_graph.load_from_disk(join(path_test, "aequilibrae_test_graph.aeg"))

        comparisons = [
            ("Graph", new_graph.graph, reference_graph.graph),
            ("b_nodes", new_graph.b_node, reference_graph.b_node),
            ("Forward-Star", new_graph.fs, reference_graph.fs),
            ("cost", new_graph.cost, reference_graph.cost),
            ("centroids", new_graph.centroids, reference_graph.centroids),
            ("skims", new_graph.skims, reference_graph.skims),
            ("link ids", new_graph.ids, reference_graph.ids),
            ("Network", new_graph.network, reference_graph.network),
            ("All Nodes", new_graph.all_nodes, reference_graph.all_nodes),
            (
                "Nodes to indices",
                new_graph.nodes_to_indices,
                reference_graph.nodes_to_indices,
            ),
        ]

        for comparison, newg, refg in comparisons:
            if not np.array_equal(newg, refg):
                self.fail(
                    "Reference %s and %s created and saved to disk are not equal"
                    % (comparison, comparison)
                )

        comparisons = [
            ("nodes", new_graph.num_nodes, reference_graph.num_nodes),
            ("links", new_graph.num_links, reference_graph.num_links),
            ("zones", new_graph.num_zones, reference_graph.num_zones),
            (
                "block through centroids",
                new_graph.block_centroid_flows,
                reference_graph.block_centroid_flows,
            ),
            ("Graph ID", new_graph.__id__, self.graph_id),
            ("Graph Version", new_graph.__version__, self.graph_version),
        ]

        for comparison, newg, refg in comparisons:
            if newg != refg:
                self.fail(
                    "Reference %s and %s created and saved to disk are not equal"
                    % (comparison, comparison)
                )
    def test_skimming_single_origin(self):

        origin = 1

        # graph
        g = Graph()
        g.load_from_disk(test_graph)
        g.set_graph(cost_field="distance", skim_fields=None)
        # g.block_centroid_flows = False
        # None implies that only the cost field will be skimmed

        # skimming results
        res = SkimResults()
        res.prepare(g)
        aux_result = MultiThreadedNetworkSkimming()
        aux_result.prepare(g, res)

        a = skimming_single_origin(origin, g, res, aux_result, 0)
        tot = np.sum(res.skims.distance[origin, :])
        if tot > 10e10:
            self.fail(
                "Skimming was not successful. At least one np.inf returned.")

        if a != origin:
            self.fail("Skimming returned an error: " + a)
    def test_execute(self):
        # Loads and prepares the graph
        g = Graph()
        g.load_from_disk(test_graph)
        g.set_graph(cost_field='distance', skim_fields=None)
        # None implies that only the cost field will be skimmed

        # Prepares the matrix for assignment
        args = {'file_name': os.path.join(gettempdir(),'my_matrix.aem'),
                'zones': g.num_zones,
                'matrix_names': ['cars', 'trucks'],
                'index_names': ['my indices']}

        matrix = AequilibraeMatrix()
        matrix.create_empty(**args)

        matrix.index[:] = g.centroids[:]
        matrix.cars.fill(1)
        matrix.trucks.fill(2)
        matrix.computational_view(['cars'])

        # Performs assignment
        res = AssignmentResults()
        res.prepare(g, matrix)

        assig = allOrNothing(matrix, g, res)
        assig.execute()

        res.save_to_disk(os.path.join(gettempdir(),'link_loads.aed'))
        res.save_to_disk(os.path.join(gettempdir(),'link_loads.csv'))

        matrix.computational_view()
        # Performs assignment
        res = AssignmentResults()
        res.prepare(g, matrix)

        assig = allOrNothing(matrix, g, res)
        assig.execute()
        res.save_to_disk(os.path.join(gettempdir(),'link_loads_2_classes.aed'))
        res.save_to_disk(os.path.join(gettempdir(),'link_loads_2_classes.csv'))
Beispiel #20
0
    def test_load_from_disk(self):
        self.test_save_to_disk()
        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)

        new_graph = Graph()
        new_graph.load_from_disk(join(path_test, 'aequilibrae_test_graph.aeg'))

        comparisons = [('Graph', new_graph.graph, reference_graph.graph),
                       ('b_nodes', new_graph.b_node, reference_graph.b_node),
                       ('Forward-Star', new_graph.fs, reference_graph.fs),
                       ('cost', new_graph.cost, reference_graph.cost),
                       ('centroids', new_graph.centroids, reference_graph.centroids),
                       ('skims', new_graph.skims, reference_graph.skims),
                       ('link ids', new_graph.ids, reference_graph.ids),
                       ('Network', new_graph.network, reference_graph.network),
                       ('All Nodes', new_graph.all_nodes, reference_graph.all_nodes),
                       ('Nodes to indices', new_graph.nodes_to_indices, reference_graph.nodes_to_indices)]

        for comparison, newg, refg in comparisons:
            if not np.array_equal(newg, refg):
                self.fail('Reference %s and %s created and saved to disk are not equal' %(comparison, comparison))

        comparisons = [('nodes', new_graph.num_nodes, reference_graph.num_nodes),
                       ('links', new_graph.num_links, reference_graph.num_links),
                       ('zones', new_graph.num_zones, reference_graph.num_zones),
                       ('block through centroids', new_graph.block_centroid_flows, reference_graph.block_centroid_flows),
                       ('Graph ID', new_graph.__id__, self.graph_id),
                       ('Graph Version', new_graph.__version__, self.graph_version)]

        for comparison, newg, refg in comparisons:
            if newg != refg:
                self.fail('Reference %s and %s created and saved to disk are not equal' %(comparison, comparison))
Beispiel #21
0
    def test_set_pce(self):
        mat_name = AequilibraeMatrix().random_name()
        g = Graph()
        g.load_from_disk(test_graph)
        g.set_graph(cost_field="distance")

        # Creates the matrix for assignment
        args = {
            "file_name": os.path.join(gettempdir(), mat_name),
            "zones": g.num_zones,
            "matrix_names": ["cars", "trucks"],
            "index_names": ["my indices"],
        }

        matrix = AequilibraeMatrix()
        matrix.create_empty(**args)

        matrix.index[:] = g.centroids[:]
        matrix.cars.fill(1.1)
        matrix.trucks.fill(2.2)
        matrix.computational_view()

        tc = TrafficClass(graph=g, matrix=matrix)

        self.assertIsInstance(tc.results, AssignmentResults, 'Results have the wrong type')
        self.assertIsInstance(tc._aon_results, AssignmentResults, 'Results have the wrong type')

        with self.assertRaises(ValueError):
            tc.set_pce('not a number')
        tc.set_pce(1)
        tc.set_pce(3.9)
class TestPathResults(TestCase):
    def test_prepare(self):
        # graph
        self.g = Graph()
        self.g.load_from_disk(test_graph)
        self.g.set_graph(cost_field="distance")

        self.r = PathResults()
        try:
            self.r.prepare(self.g)
        except Exception as err:
            self.fail("Path result preparation failed - {}".format(
                err.__str__()))

    def test_reset(self):
        self.test_prepare()
        try:
            self.r.reset()
        except Exception as err:
            self.fail("Path result resetting failed - {}".format(
                err.__str__()))

    def test_update_trace(self):
        self.test_prepare()
        try:
            self.r.reset()
        except Exception as err:
            self.fail("Path result resetting failed - {}".format(
                err.__str__()))

        path_computation(origin, dest, self.g, self.r)

        if list(self.r.path) != [53, 52, 13]:
            self.fail("Path computation failed. Wrong sequence of links")

        if list(self.r.path_nodes) != [5, 168, 166, 27]:
            self.fail("Path computation failed. Wrong sequence of path nodes")

        if list(self.r.milepost) != [0, 341, 1398, 2162]:
            self.fail("Path computation failed. Wrong milepost results")
Beispiel #23
0
    def loaded_new_graph_from_file(self):
        file_types = ["AequilibraE graph(*.aeg)"]

        new_name, file_type = GetOutputFileName(self, 'Graph file', file_types,
                                                ".aeg", self.path)
        self.cb_minimizing.clear()
        self.available_skims_table.clearContents()
        self.block_paths.setChecked(False)
        self.graph = None
        if new_name is not None:
            self.graph_file_name.setText(new_name)
            self.graph = Graph()
            self.graph.load_from_disk(new_name)

            self.block_paths.setChecked(self.graph.block_centroid_flows)
            graph_fields = list(self.graph.graph.dtype.names)
            self.skimmeable_fields = self.graph.available_skims()

            self.available_skims_table.setRowCount(len(self.skimmeable_fields))
            for q in self.skimmeable_fields:
                self.cb_minimizing.addItem(q)
                self.available_skims_table.setItem(0, 0, QTableWidgetItem(q))
Beispiel #24
0
class TestPathResults(TestCase):
    def test_prepare(self):
        # graph
        self.g = Graph()
        self.g.load_from_disk(test_graph)
        self.g.set_graph(cost_field='distance', skim_fields=None)

        self.r = PathResults()
        try:
            self.r.prepare(self.g)
        except:
            self.fail('Path result preparation failed')


    def test_reset(self):
        self.test_prepare()
        try:
            self.r.reset()
        except:
            self.fail('Path result resetting failed')

    def test_update_trace(self):
        self.test_prepare()
        try:
            self.r.reset()
        except:
            self.fail('Path result resetting failed')

        path_computation(origin, dest, self.g, self.r)

        if list(self.r.path) != [53, 52, 13]:
            self.fail('Path computation failed. Wrong sequence of links')

        if list(self.r.path_nodes) != [5, 168, 166, 27]:
            self.fail('Path computation failed. Wrong sequence of path nodes')

        if list(self.r.milepost) != [0, 341, 1398, 2162]:
            self.fail('Path computation failed. Wrong milepost results')
class TestPathResults(TestCase):
    def test_prepare(self):
        # graph
        self.g = Graph()
        self.g.load_from_disk(test_graph)
        self.g.set_graph(cost_field='distance', skim_fields=None)

        self.r = PathResults()
        try:
            self.r.prepare(self.g)
        except:
            self.fail('Path result preparation failed')


    def test_reset(self):
        self.test_prepare()
        try:
            self.r.reset()
        except:
            self.fail('Path result resetting failed')

    def test_update_trace(self):
        self.test_prepare()
        try:
            self.r.reset()
        except:
            self.fail('Path result resetting failed')

        path_computation(origin, dest, self.g, self.r)

        if list(self.r.path) != [53, 52, 13]:
            self.fail('Path computation failed. Wrong sequence of links')

        if list(self.r.path_nodes) != [5, 168, 166, 27]:
            self.fail('Path computation failed. Wrong sequence of path nodes')

        if list(self.r.milepost) != [0, 341, 1398, 2162]:
            self.fail('Path computation failed. Wrong milepost results')
Beispiel #26
0
    def loaded_new_graph_from_file(self):
        file_types = "AequilibraE graph(*.aeg)"
        if len(self.graph_file_name.text()) > 0:
            newname = QFileDialog.getOpenFileName(None, 'Result file',
                                                  self.graph_file_name.text(),
                                                  file_types)
        else:
            newname = QFileDialog.getOpenFileName(None, 'Result file',
                                                  self.path, file_types)

        self.cb_minimizing.clear()
        self.cb_skims.clear()
        self.all_centroids.setText('')
        self.block_paths.setChecked(False)
        if newname is not None:
            self.graph_file_name.setText(newname)
            self.graph = Graph()
            self.graph.load_from_disk(newname)

            self.all_centroids.setText(str(self.graph.centroids))
            if self.graph.block_centroid_flows:
                self.block_paths.setChecked(True)
            graph_fields = list(self.graph.graph.dtype.names)
            self.skimmeable_fields = [
                x for x in graph_fields if x not in [
                    'link_id',
                    'a_node',
                    'b_node',
                    'direction',
                    'id',
                ]
            ]

            for q in self.skimmeable_fields:
                self.cb_minimizing.addItem(q)
                self.cb_skims.addItem(q)
    def setUp(self) -> None:
        self.mat_name = AequilibraeMatrix().random_name()
        self.g = Graph()
        self.g.load_from_disk(test_graph)
        self.g.set_graph(cost_field="distance")

        # Creates the matrix for assignment
        args = {
            "file_name": os.path.join(gettempdir(), self.mat_name),
            "zones": self.g.num_zones,
            "matrix_names": ["cars", "trucks"],
            "index_names": ["my indices"],
        }

        matrix = AequilibraeMatrix()
        matrix.create_empty(**args)

        matrix.index[:] = self.g.centroids[:]
        matrix.cars.fill(1.1)
        matrix.trucks.fill(2.2)

        # Exports matrix to OMX in order to have two matrices to work with
        matrix.export(os.path.join(gettempdir(), "my_matrix.omx"))
        matrix.close()
Beispiel #28
0
    def test_load_from_disk(self):
        self.test_save_to_disk()
        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)

        new_graph = Graph()
        new_graph.load_from_disk(join(path_test, 'aequilibrae_test_graph.aeg'))

        comparisons = [
            ('Graph', new_graph.graph, reference_graph.graph),
            ('b_nodes', new_graph.b_node, reference_graph.b_node),
            ('Forward-Star', new_graph.fs, reference_graph.fs),
            ('cost', new_graph.cost, reference_graph.cost),
            ('centroids', new_graph.centroids, reference_graph.centroids),
            ('skims', new_graph.skims, reference_graph.skims),
            ('link ids', new_graph.ids, reference_graph.ids),
            ('Network', new_graph.network, reference_graph.network),
            ('All Nodes', new_graph.all_nodes, reference_graph.all_nodes),
            ('Nodes to indices', new_graph.nodes_to_indices,
             reference_graph.nodes_to_indices)
        ]

        for comparison, newg, refg in comparisons:
            if not np.array_equal(newg, refg):
                self.fail(
                    'Reference %s and %s created and saved to disk are not equal'
                    % (comparison, comparison))

        comparisons = [
            ('nodes', new_graph.num_nodes, reference_graph.num_nodes),
            ('links', new_graph.num_links, reference_graph.num_links),
            ('zones', new_graph.num_zones, reference_graph.num_zones),
            ('block through centroids', new_graph.block_centroid_flows,
             reference_graph.block_centroid_flows),
            ('Graph ID', new_graph.__id__, self.graph_id),
            ('Graph Version', new_graph.__version__, self.graph_version)
        ]

        for comparison, newg, refg in comparisons:
            if newg != refg:
                self.fail(
                    'Reference %s and %s created and saved to disk are not equal'
                    % (comparison, comparison))
Beispiel #29
0
    def assign_matrix(self, matrix: AequilibraeMatrix, result_name: str):
        conn = database_connection()

        sql = f"select link_id, direction, a_node, b_node, distance, 1 capacity from {DELAUNAY_TABLE}"

        df = pd.read_sql(sql, conn)
        centroids = np.array(np.unique(np.hstack((df.a_node.values, df.b_node.values))), int)

        g = Graph()
        g.mode = 'delaunay'
        g.network = df
        g.prepare_graph(centroids)
        g.set_blocked_centroid_flows(True)

        tc = TrafficClass('delaunay', g, matrix)
        ta = TrafficAssignment()
        ta.set_classes([tc])
        ta.set_time_field('distance')
        ta.set_capacity_field('capacity')
        ta.set_vdf('BPR')
        ta.set_vdf_parameters({"alpha": 0, "beta": 1.0})
        ta.set_algorithm('all-or-nothing')
        ta.execute()

        report = {"setup": str(ta.info())}
        data = [result_name, "Delaunay assignment", self.procedure_id, str(report), ta.procedure_date, '']
        conn.execute("""Insert into results(table_name, procedure, procedure_id, procedure_report, timestamp,
                                            description) Values(?,?,?,?,?,?)""", data)
        conn.commit()
        conn.close()

        cols = []
        for x in matrix.view_names:
            cols.extend([f'{x}_ab', f'{x}_ba', f'{x}_tot'])
        df = ta.results()[cols]
        conn = sqlite3.connect(join(environ[ENVIRON_VAR], "results_database.sqlite"))
        df.to_sql(result_name, conn)
        conn.close()
Beispiel #30
0
    def test_execute(self):
        # Loads and prepares the graph
        g = Graph()
        g.load_from_disk(test_graph)
        g.set_graph(cost_field='distance', skim_fields=None)
        # None implies that only the cost field will be skimmed

        # Prepares the matrix for assignment
        args = {
            'file_name': '/tmp/my_matrix.aem',
            'zones': g.num_zones,
            'matrix_names': ['cars', 'trucks'],
            'index_names': ['my indices']
        }

        matrix = AequilibraeMatrix()
        matrix.create_empty(**args)

        matrix.index[:] = g.centroids[:]
        matrix.cars.fill(1)
        matrix.trucks.fill(2)
        matrix.computational_view(['cars'])

        # Performs assignment
        res = AssignmentResults()
        res.prepare(g, matrix)

        assig = allOrNothing(matrix, g, res)
        assig.execute()

        res.save_to_disk('/tmp/link_loads.aed')
        res.save_to_disk('/tmp/link_loads.csv')

        matrix.computational_view()
        # Performs assignment
        res = AssignmentResults()
        res.prepare(g, matrix)

        assig = allOrNothing(matrix, g, res)
        assig.execute()
        res.save_to_disk('/tmp/link_loads_2_classes.aed')
        res.save_to_disk('/tmp/link_loads_2_classes.csv')
    def test_execute(self):
        # Loads and prepares the graph
        g = Graph()
        g.load_from_disk(test_graph)
        g.set_graph(cost_field="distance", skim_fields=None)
        # None implies that only the cost field will be skimmed

        # Prepares the matrix for assignment
        args = {
            "file_name": os.path.join(gettempdir(), "my_matrix.aem"),
            "zones": g.num_zones,
            "matrix_names": ["cars", "trucks"],
            "index_names": ["my indices"],
        }

        matrix = AequilibraeMatrix()
        matrix.create_empty(**args)

        matrix.index[:] = g.centroids[:]
        matrix.cars.fill(1)
        matrix.trucks.fill(2)
        matrix.computational_view(["cars"])

        # Performs assignment
        res = AssignmentResults()
        res.prepare(g, matrix)

        assig = allOrNothing(matrix, g, res)
        assig.execute()

        res.save_to_disk(os.path.join(gettempdir(), "link_loads.aed"))
        res.save_to_disk(os.path.join(gettempdir(), "link_loads.csv"))

        matrix.computational_view()
        # Performs assignment
        res = AssignmentResults()
        res.prepare(g, matrix)

        assig = allOrNothing(matrix, g, res)
        assig.execute()
        res.save_to_disk(os.path.join(gettempdir(), "link_loads_2_classes.aed"))
        res.save_to_disk(os.path.join(gettempdir(), "link_loads_2_classes.csv"))
Beispiel #32
0
class TestGraph(TestCase):

    def test_create_from_geography(self):
        self.graph = Graph()
        self.graph.create_from_geography(
            test_network, 'link_id', 'dir', 'distance', centroids=centroids, skim_fields = [], anode="A_NODE",
            bnode="B_NODE")
        self.graph.set_graph(cost_field='distance', block_centroid_flows=True)

    def test_load_network_from_csv(self):
        pass

    def test_prepare_graph(self):
        self.test_create_from_geography()
        self.graph.prepare_graph(centroids)

        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)
        if not np.array_equal(self.graph.graph, reference_graph.graph):
            self.fail('Reference graph and newly-prepared graph are not equal')

    def test_set_graph(self):
        self.test_prepare_graph()
        self.graph.set_graph(cost_field='distance',block_centroid_flows=True)
        if self.graph.num_zones != centroids.shape[0]:
            self.fail('Number of centroids not properly set')
        if self.graph.num_links != 222:
            self.fail('Number of links not properly set')
        if self.graph.num_nodes != 93:
            self.fail('Number of nodes not properly set - ' + str(self.graph.num_nodes))

    def test_save_to_disk(self):
        self.test_create_from_geography()
        self.graph.save_to_disk(join(path_test, 'aequilibrae_test_graph.aeg'))
        self.graph_id = self.graph.__id__
        self.graph_version = self.graph.__version__

    def test_load_from_disk(self):
        self.test_save_to_disk()
        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)

        new_graph = Graph()
        new_graph.load_from_disk(join(path_test, 'aequilibrae_test_graph.aeg'))

        comparisons = [('Graph', new_graph.graph, reference_graph.graph),
                       ('b_nodes', new_graph.b_node, reference_graph.b_node),
                       ('Forward-Star', new_graph.fs, reference_graph.fs),
                       ('cost', new_graph.cost, reference_graph.cost),
                       ('centroids', new_graph.centroids, reference_graph.centroids),
                       ('skims', new_graph.skims, reference_graph.skims),
                       ('link ids', new_graph.ids, reference_graph.ids),
                       ('Network', new_graph.network, reference_graph.network),
                       ('All Nodes', new_graph.all_nodes, reference_graph.all_nodes),
                       ('Nodes to indices', new_graph.nodes_to_indices, reference_graph.nodes_to_indices)]

        for comparison, newg, refg in comparisons:
            if not np.array_equal(newg, refg):
                self.fail('Reference %s and %s created and saved to disk are not equal' %(comparison, comparison))

        comparisons = [('nodes', new_graph.num_nodes, reference_graph.num_nodes),
                       ('links', new_graph.num_links, reference_graph.num_links),
                       ('zones', new_graph.num_zones, reference_graph.num_zones),
                       ('block through centroids', new_graph.block_centroid_flows, reference_graph.block_centroid_flows),
                       ('Graph ID', new_graph.__id__, self.graph_id),
                       ('Graph Version', new_graph.__version__, self.graph_version)]

        for comparison, newg, refg in comparisons:
            if newg != refg:
                self.fail('Reference %s and %s created and saved to disk are not equal' %(comparison, comparison))

    def test_reset_single_fields(self):
        pass

    def test_add_single_field(self):
        pass

    def test_available_skims(self):
        self.test_set_graph()
        if self.graph.available_skims() != ['distance']:
            self.fail('Skim availability with problems')
Beispiel #33
0
 def test_create_from_geography(self):
     self.graph = Graph()
     self.graph.create_from_geography(
         test_network, 'link_id', 'dir', 'distance', centroids=centroids, skim_fields = [], anode="A_NODE",
         bnode="B_NODE")
     self.graph.set_graph(cost_field='distance', block_centroid_flows=True)
Beispiel #34
0
class TrafficAssignmentDialog(QtWidgets.QDialog, FORM_CLASS):
    def __init__(self, iface):
        QtWidgets.QDialog.__init__(self)
        self.iface = iface
        self.setupUi(self)
        self.path = standard_path()
        self.output_path = None
        self.temp_path = None
        self.error = None
        self.report = None
        self.method = {}
        self.matrices = OrderedDict()
        self.skims = []
        self.matrix = None
        self.graph = Graph()
        self.results = AssignmentResults()
        self.block_centroid_flows = None
        self.worker_thread = None

        # Signals for the matrix_procedures tab
        self.but_load_new_matrix.clicked.connect(self.find_matrices)

        # Signals from the Network tab
        self.load_graph_from_file.clicked.connect(self.load_graph)

        # Signals for the algorithm tab
        self.progressbar0.setVisible(False)
        self.progressbar0.setValue(0)
        self.progress_label0.setVisible(False)

        self.do_assignment.clicked.connect(self.run)
        self.cancel_all.clicked.connect(self.exit_procedure)
        self.select_output_folder.clicked.connect(self.choose_folder_for_outputs)

        self.cb_choose_algorithm.addItem('All-Or-Nothing')
        self.cb_choose_algorithm.currentIndexChanged.connect(self.changing_algorithm)

        # slots for skim tab
        self.but_build_query.clicked.connect(partial(self.build_query, 'select link'))

        self.changing_algorithm()

        # path file
        self.path_file = OutputType()

        # Queries
        tables = [self.select_link_list, self.list_link_extraction]
        for table in tables:
            table.setColumnWidth(0, 280)
            table.setColumnWidth(1, 40)
            table.setColumnWidth(2, 150)
            table.setColumnWidth(3, 40)

        self.graph_properties_table.setColumnWidth(0, 190)
        self.graph_properties_table.setColumnWidth(1, 240)

        # critical link
        self.but_build_query.clicked.connect(partial(self.build_query, 'select link'))
        self.do_select_link.stateChanged.connect(self.set_behavior_special_analysis)
        self.tot_crit_link_queries = 0
        self.critical_output = OutputType()

        # link flow extraction
        self.but_build_query_extract.clicked.connect(partial(self.build_query, 'Link flow extraction'))
        self.do_extract_link_flows.stateChanged.connect(self.set_behavior_special_analysis)
        self.tot_link_flow_extract = 0
        self.link_extract = OutputType()

        # Disabling resources not yet implemented
        self.do_select_link.setEnabled(False)
        self.but_build_query.setEnabled(False)
        self.select_link_list.setEnabled(False)
        self.skim_list_table.setEnabled(False)

        self.do_extract_link_flows.setEnabled(False)
        self.but_build_query_extract.setEnabled(False)
        self.list_link_extraction.setEnabled(False)
        self.new_matrix_to_assign()

        self.table_matrix_list.setColumnWidth(0, 135)
        self.table_matrix_list.setColumnWidth(1, 135)
        self.table_matrices_to_assign.setColumnWidth(0, 125)
        self.table_matrices_to_assign.setColumnWidth(1, 125)
        self.skim_list_table.setColumnWidth(0, 70)
        self.skim_list_table.setColumnWidth(1, 490)

    def choose_folder_for_outputs(self):
        new_name = GetOutputFolderName(self.path, 'Output folder for traffic assignment')
        if new_name:
            self.output_path = new_name
            self.lbl_output.setText(new_name)
        else:
            self.output_path = None
            self.lbl_output.setText(new_name)

    def load_graph(self):
        self.lbl_graphfile.setText('')

        file_types = ["AequilibraE graph(*.aeg)"]
        default_type = '.aeg'
        box_name = 'Traffic Assignment'
        graph_file, _ = GetOutputFileName(self, box_name, file_types, default_type, self.path)

        if graph_file is not None:
            self.graph.load_from_disk(graph_file)

            fields = list(set(self.graph.graph.dtype.names) - set(self.graph.required_default_fields))
            self.minimizing_field.addItems(fields)
            self.update_skim_list(fields)
            self.lbl_graphfile.setText(graph_file)

            cores = get_parameter_chain(['system', 'cpus'])
            self.results.set_cores(cores)

            # show graph properties
            def centers_item(qt_item):
                cell_widget = QWidget()
                lay_out = QHBoxLayout(cell_widget)
                lay_out.addWidget(qt_item)
                lay_out.setAlignment(Qt.AlignCenter)
                lay_out.setContentsMargins(0, 0, 0, 0)
                cell_widget.setLayout(lay_out)
                return cell_widget

            items = [['Graph ID', self.graph.__id__],
                     ['Number of links', self.graph.num_links],
                     ['Number of nodes', self.graph.num_nodes],
                     ['Number of centroids', self.graph.num_zones]]

            self.graph_properties_table.clearContents()
            self.graph_properties_table.setRowCount(5)
            for i, item in enumerate(items):
                self.graph_properties_table.setItem(i, 0, QTableWidgetItem(item[0]))
                self.graph_properties_table.setItem(i, 1, QTableWidgetItem(str(item[1])))

            self.graph_properties_table.setItem(4, 0, QTableWidgetItem('Block flows through centroids'))
            self.block_centroid_flows = QCheckBox()
            self.block_centroid_flows.setChecked(self.graph.block_centroid_flows)
            self.graph_properties_table.setCellWidget(4, 1, centers_item(self.block_centroid_flows))
        else:
            self.graph = Graph()
        self.set_behavior_special_analysis()

    def changing_algorithm(self):
        if self.cb_choose_algorithm.currentText() == 'All-Or-Nothing':
            self.method['algorithm'] = 'AoN'

    def run_thread(self):
        self.worker_thread.assignment.connect(self.signal_handler)
        # QObject.connect(self.worker_thread, SIGNAL("assignment"), self.signal_handler)
        self.worker_thread.start()
        self.exec_()

    def job_finished_from_thread(self):
        self.report = self.worker_thread.report
        self.produce_all_outputs()

        self.exit_procedure()

    def run(self):
        if self.check_data():
            self.set_output_names()
            self.progress_label0.setVisible(True)
            self.progressbar0.setVisible(True)
            self.progressbar0.setRange(0, self.graph.num_zones)
            try:
                if self.method['algorithm'] == 'AoN':
                    self.worker_thread = allOrNothing(self.matrix, self.graph, self.results)
                self.run_thread()
            except ValueError as error:
                qgis.utils.iface.messageBar().pushMessage("Input error", error.message, level=3)
        else:
            qgis.utils.iface.messageBar().pushMessage("Input error", self.error, level=3)

    def set_output_names(self):
        self.path_file.temp_file = os.path.join(self.temp_path, 'path_file.aed')
        self.path_file.output_name = os.path.join(self.output_path, 'path_file')
        self.path_file.extension = 'aed'

        if self.do_path_file.isChecked():
            self.results.setSavePathFile(save=True, path_result=self.path_file.temp_file)

        self.link_extract.temp_file = os.path.join(self.temp_path, 'link_extract')
        self.link_extract.output_name = os.path.join(self.output_path, 'link_extract')
        self.link_extract.extension = 'aed'

        self.critical_output.temp_file = os.path.join(self.temp_path, 'critical_output')
        self.critical_output.output_name = os.path.join(self.output_path, 'critical_output')
        self.critical_output.extension = 'aed'

    def check_data(self):
        self.error = None

        self.change_graph_settings()

        if not self.graph.num_links:
            self.error = 'Graph was not loaded'
            return False

        self.matrix = None
        if not self.prepare_assignable_matrices():
            return False

        if self.matrix is None:
            self.error = 'Demand matrix missing'
            return False

        if self.output_path is None:
            self.error = 'Parameters for output missing'
            return False

        self.temp_path = os.path.join(self.output_path, 'temp')
        if not os.path.exists(self.temp_path):
            os.makedirs(self.temp_path)

        self.results.prepare(self.graph, self.matrix)
        return True

    def load_assignment_queries(self):
        # First we load the assignment queries
        query_labels = []
        query_elements = []
        query_types = []
        if self.tot_crit_link_queries:
            for i in range(self.tot_crit_link_queries):
                links = eval(self.select_link_list.item(i, 0).text())
                query_type = self.select_link_list.item(i, 1).text()
                query_name = self.select_link_list.item(i, 2).text()

                for l in links:
                    d = directions_dictionary[l[1]]
                    lk = self.graph.ids[(self.graph.graph['link_id'] == int(l[0])) &
                                        (self.graph.graph['direction'] == d)]

                query_labels.append(query_name)
                query_elements.append(lk)
                query_types.append(query_type)

        self.critical_queries = {'labels': query_labels,
                                 'elements': query_elements,
                                 ' type': query_types}

    def signal_handler(self, val):
        if val[0] == 'zones finalized':
            self.progressbar0.setValue(val[1])
        elif val[0] == 'text AoN':
            self.progress_label0.setText(val[1])
        elif val[0] == 'finished_threaded_procedure':
            self.job_finished_from_thread()

    # TODO: Write code to export skims
    def produce_all_outputs(self):

        extension = 'aed'
        if not self.do_output_to_aequilibrae.isChecked():
            extension = 'csv'
            if self.do_output_to_sqlite.isChecked():
                extension = 'sqlite'

        # Save link flows to disk
        self.results.save_to_disk(os.path.join(self.output_path, 'link_flows.' + extension), output='loads')

        # save Path file if that is the case
        if self.do_path_file.isChecked():
            if self.method['algorithm'] == 'AoN':
                if self.do_output_to_sqlite.isChecked():
                    self.results.save_to_disk(file_name=os.path.join(self.output_path, 'path_file.' + extension),
                                              output='path_file')

        # Saves output skims
        if self.skim_list_table.rowCount() > 0:
            self.results.skims.copy(os.path.join(self.output_path, 'skims.aem'))

        # if self.do_select_link.isChecked():
        #     if self.method['algorithm'] == 'AoN':
        #         del(self.results.critical_links['results'])
        #         self.results.critical_links = None
        #
        #         shutil.move(self.critical_output.temp_file + '.aep', self.critical_output.output_name)
        #         shutil.move(self.critical_output.temp_file + '.aed', self.critical_output.output_name[:-3] + 'aed')
        #
        # if self.do_extract_link_flows.isChecked():
        #     if self.method['algorithm'] == 'AoN':
        #         del(self.results.link_extraction['results'])
        #         self.results.link_extraction = None
        #
        #         shutil.move(self.link_extract.temp_file + '.aep', self.link_extract.output_name)
        #         shutil.move(self.link_extract.temp_file + '.aed', self.link_extract.output_name[:-3] + 'aed')

    # Procedures related to critical analysis. Not yet fully implemented
    def build_query(self, purpose):
        if purpose == 'select link':
            button = self.but_build_query
            message = 'Select Link Analysis'
            table = self.select_link_list
            counter = self.tot_crit_link_queries
        else:
            button = self.but_build_query_extract
            message = 'Link flow extraction'
            table = self.list_link_extraction
            counter = self.tot_link_flow_extract

        button.setEnabled(False)
        dlg2 = LoadSelectLinkQueryBuilderDialog(self.iface, self.graph.graph, message)
        dlg2.exec_()

        if dlg2.links is not None:
            table.setRowCount(counter + 1)
            text = ''
            for i in dlg2.links:
                text = text + ', (' + only_str(i[0]) + ', "' + only_str(i[1]) + '")'
            text = text[2:]
            table.setItem(counter, 0, QTableWidgetItem(text))
            table.setItem(counter, 1, QTableWidgetItem(dlg2.query_type))
            table.setItem(counter, 2, QTableWidgetItem(dlg2.query_name))
            del_button = QPushButton('X')
            del_button.clicked.connect(partial(self.click_button_inside_the_list, purpose))
            table.setCellWidget(counter, 3, del_button)
            counter += 1

        if purpose == 'select link':
            self.tot_crit_link_queries = counter

        elif purpose == 'Link flow extraction':
            self.tot_link_flow_extract = counter

        button.setEnabled(True)

    def click_button_inside_the_list(self, purpose):
        if purpose == 'select link':
            table = self.select_link_list
        else:
            table = self.list_link_extraction

        button = self.sender()
        index = self.select_link_list.indexAt(button.pos())
        row = index.row()
        table.removeRow(row)

        if purpose == 'select link':
            self.tot_crit_link_queries -= 1
        elif purpose == 'Link flow extraction':
            self.tot_link_flow_extract -= 1

    def set_behavior_special_analysis(self):
        if self.graph.num_links < 1:
            behavior = False
        else:
            behavior = True

        self.do_path_file.setEnabled(behavior)

        # This line of code turns off the features of select link analysis and link flow extraction while these
        # features are still being developed
        behavior = False

        self.do_select_link.setEnabled(behavior)
        self.do_extract_link_flows.setEnabled(behavior)

        self.but_build_query.setEnabled(behavior * self.do_select_link.isChecked())
        self.select_link_list.setEnabled(behavior * self.do_select_link.isChecked())

        self.list_link_extraction.setEnabled(behavior * self.do_extract_link_flows.isChecked())
        self.but_build_query_extract.setEnabled(behavior * self.do_extract_link_flows.isChecked())

    def update_skim_list(self, skims):
        self.skim_list_table.clearContents()
        self.skim_list_table.setRowCount(len(skims))

        for i, skm in enumerate(skims):
            self.skim_list_table.setItem(i, 1, QTableWidgetItem(skm))
            chb = QCheckBox()
            my_widget = QWidget()
            lay_out = QHBoxLayout(my_widget)
            lay_out.addWidget(chb)
            lay_out.setAlignment(Qt.AlignCenter)
            lay_out.setContentsMargins(0, 0, 0, 0)
            my_widget.setLayout(lay_out)

            self.skim_list_table.setCellWidget(i, 0, my_widget)

    # All Matrix loading and assignables selection
    def update_matrix_list(self):
        self.table_matrix_list.clearContents()
        self.table_matrix_list.clearContents()
        self.table_matrix_list.setEditTriggers(QAbstractItemView.NoEditTriggers)
        self.table_matrix_list.setRowCount(len(self.matrices.keys()))

        for i, data_name in enumerate(self.matrices.keys()):
            self.table_matrix_list.setItem(i, 0, QTableWidgetItem(data_name))

            cbox = QComboBox()
            for idx in self.matrices[data_name].index_names:
                cbox.addItem(str(idx))
            self.table_matrix_list.setCellWidget(i, 1, cbox)

    def find_matrices(self):
        dlg2 = LoadMatrixDialog(self.iface)
        dlg2.show()
        dlg2.exec_()
        if dlg2.matrix is not None:
            matrix_name = dlg2.matrix.file_path
            matrix_name = os.path.splitext(os.path.basename(matrix_name))[0]
            matrix_name = self.find_non_conflicting_name(matrix_name, self.matrices)
            self.matrices[matrix_name] = dlg2.matrix
            self.update_matrix_list()

            row_count = self.table_matrices_to_assign.rowCount()
            new_matrix = list(self.matrices.keys())[-1]

            for i in range(row_count):
                cb = self.table_matrices_to_assign.cellWidget(i, 0)
                cb.insertItem(-1, new_matrix)

    def find_non_conflicting_name(self, data_name, dictio):
        if data_name in dictio:
            i = 1
            new_data_name = data_name + '_' + str(i)
            while new_data_name in dictio:
                i += 1
                new_data_name = data_name + '_' + str(i)
            data_name = new_data_name
        return data_name

    def changed_assignable_matrix(self, mi):
        chb = self.sender()
        mat_name = chb.currentText()

        table = self.table_matrices_to_assign
        for row in range(table.rowCount()):
            if table.cellWidget(row, 0) == chb:
                break

        if len(mat_name) == 0:
            if row + 1 < table.rowCount():
                self.table_matrices_to_assign.removeRow(row)
        else:
            mat_cores = self.matrices[mat_name].names
            cbox2 = QComboBox()
            cbox2.addItems(mat_cores)
            self.table_matrices_to_assign.setCellWidget(row, 1, cbox2)

            if row + 1 == table.rowCount():
                self.new_matrix_to_assign()

    def new_matrix_to_assign(self):
        # We edit ALL the combo boxes to have the current list of matrices
        row_count = self.table_matrices_to_assign.rowCount()
        self.table_matrices_to_assign.setRowCount(row_count + 1)

        cbox = QComboBox()
        cbox.addItems(list(self.matrices.keys()))
        cbox.addItem('')
        cbox.setCurrentIndex(cbox.count() - 1)
        cbox.currentIndexChanged.connect(self.changed_assignable_matrix)
        self.table_matrices_to_assign.setCellWidget(row_count, 0, cbox)

    def prepare_assignable_matrices(self):
        table = self.table_matrices_to_assign
        idx = self.graph.centroids
        mat_names = []
        if table.rowCount() > 1:
            for row in range(table.rowCount() - 1):
                mat = table.cellWidget(row, 0).currentText()
                core = table.cellWidget(row, 1).currentText()

                mat_index = self.matrices[mat].index
                if not np.array_equal(idx, mat_index):
                    no_zones = [item for item in mat_index if item not in idx]
                    # We only return an error if the matrix has too many centroids
                    if no_zones:
                        self.error = 'Assignable matrix has centroids that do not exist in the network: {}'.format(
                            ','.join([str(x) for x in no_zones]))
                        return False
                if core in mat_names:
                    self.error = 'Assignable matrices cannot have same names'
                    return False
                mat_names.append(only_str(core))

            self.matrix = AequilibraeMatrix()
            self.matrix.create_empty(file_name=self.matrix.random_name(),
                                     zones=idx.shape[0],
                                     matrix_names=mat_names)
            self.matrix.index[:] = idx[:]

            for row in range(table.rowCount() - 1):
                mat = table.cellWidget(row, 0).currentText()
                core = table.cellWidget(row, 1).currentText()
                src_mat = self.matrices[mat].matrix[core]
                dest_mat = self.matrix.matrix[core]

                rows = src_mat.shape[0]
                cols = src_mat.shape[1]
                dest_mat[:rows, :cols] = src_mat[:, :]

                # Inserts cols and rows that don;t exist
                if rows != self.matrix.zones:
                    src_index = list(self.matrices[mat].index[:])
                    for i, row in enumerate(idx):
                        if row not in src_index:
                            dest_mat[i + 1:, :] = dest_mat[i:-1, :]
                            dest_mat[i, :] = 0

                if cols != self.matrix.zones:
                    for j, col in enumerate(idx):
                        if col not in src_index:
                            dest_mat[:, j + 1:] = dest_mat[:, j:-1]
                            dest_mat[:, j] = 0

            self.matrix.computational_view()
        else:
            self.error = 'You need to have at least one matrix to assign'
            return False

        return True

    def change_graph_settings(self):
        skims = []
        table = self.skim_list_table
        for i in range(table.rowCount()):
            for chb in table.cellWidget(i, 0).findChildren(QCheckBox):
                if chb.isChecked():
                    skims.append(only_str(table.item(i, 1).text()))

        if len(skims) == 0:
            skims = False

        self.graph.set_graph(cost_field=self.minimizing_field.currentText(),
                             skim_fields=skims,
                             block_centroid_flows=self.block_centroid_flows.isChecked())

    def exit_procedure(self):
        self.close()
        if self.report:
            dlg2 = ReportDialog(self.iface, self.report)
            dlg2.show()
            dlg2.exec_()
Beispiel #35
0
    def doWork(self):
        if self.selected_only:
            self.features = self.net_layer.selectedFeatures()
            self.feat_count = self.net_layer.selectedFeatureCount()
        else:
            self.features = self.net_layer.getFeatures()
            self.feat_count = self.net_layer.featureCount()

        # Checking ID uniqueness
        self.report.append(reporter("Checking ID uniqueness", 0))
        self.emit(SIGNAL("ProgressText ( PyQt_PyObject )"),"Checking ID uniqueness. Please wait")
        all_ids = self.net_layer.uniqueValues(self.link_id)

        if NULL in all_ids:
            self.error = "ID field has NULL values"
            self.report.append(self.error)
        else:
            if len(all_ids) < self.feat_count:
                self.error = 'IDs are not unique.'
                self.report.append(self.error)

        if self.error is None:
            self.report.append(reporter('Loading data from layer', 0))
            self.emit(SIGNAL("ProgressText ( PyQt_PyObject )"),"Loading data from layer")
            self.emit(SIGNAL("ProgressValue( PyQt_PyObject )"), 0)
            self.emit(SIGNAL("ProgressMaxValue( PyQt_PyObject )"), self.feat_count)

            self.graph = Graph()

            all_types = [np.int32, np.int32, np.int32, np.int8]
            all_titles = [reserved_fieds.link_id, reserved_fieds.a_node, reserved_fieds.b_node, reserved_fieds.direction]

            for name_field, values in self.fields_to_add.iteritems():
                all_titles.append((name_field + '_ab').encode('ascii','ignore'))
                all_types.append(np.float64)
                all_titles.append((name_field + '_ba').encode('ascii','ignore'))
                all_types.append(np.float64)

            dt = [(t, d) for t, d in zip(all_titles, all_types)]

            a_node = self.net_layer.fieldNameIndex(reserved_fieds.a_node)
            b_node = self.net_layer.fieldNameIndex(reserved_fieds.b_node)
            data = []

            for p, feat in enumerate(self.features):
                line = []
                line.append(feat.attributes()[self.link_id])
                line.append(feat.attributes()[a_node])
                line.append(feat.attributes()[b_node])
                if self.bi_directional:
                    line.append(feat.attributes()[self.direction_field])
                else:
                    line.append(1)

                # We append the data fields now
                for k, v in self.fields_to_add.iteritems():
                    a, b = v
                    line.append(feat.attributes()[a])
                    if self.bi_directional:
                        line.append(feat.attributes()[b])
                    else:
                        line.append(-1)

                for k in line:
                    if k == NULL:
                        t = ','.join([str(x) for x in line])
                        self.error = 'Field with NULL value - ID:' + str(line[0]) + "  /  " + t
                        break
                if self.error is not None:
                    break
                data.append(line)

                if p % 50 == 0:
                    self.emit(SIGNAL("ProgressValue( PyQt_PyObject )"), p)

            if self.error is None:
                self.report.append(reporter('Converting data to graph', 0))
                network = np.asarray(data)

                self.graph.network = np.zeros(network.shape[0], dtype=dt)

                for k, t in enumerate(dt):
                    self.graph.network[t[0]] = network[:,k].astype(t[1])
                del network

                self.graph.type_loaded = 'NETWORK'
                self.graph.status = 'OK'
                self.graph.network_ok = True
                self.graph.prepare_graph()
                self.graph.__source__ = None
                self.graph.__field_name__ = None
                self.graph.__layer_name__ = None

        self.report.append(reporter('Process finished', 0))
        self.emit(SIGNAL("finished_threaded_procedure( PyQt_PyObject )"), None)
Beispiel #36
0
    def doWork(self):
        # Checking ID uniqueness
        self.emit(SIGNAL("ProgressText ( PyQt_PyObject )"),
                  "Checking ID uniqueness")
        self.emit(SIGNAL("ProgressMaxValue( PyQt_PyObject )"), self.featcount)

        a = []
        all_ids = np.zeros(self.featcount, dtype=np.int_)

        if self.selected_only:
            self.features = self.netlayer.selectedFeatures()
        else:
            self.features = self.netlayer.getFeatures()

        p = 0
        for feat in self.features:
            k = feat.attributes()[self.linkid]
            if k == NULL:
                self.error = "ID field has NULL values"
                break
            else:
                all_ids[p] = k
                p += 1
                if p % 50 == 0:
                    self.emit(SIGNAL("ProgressValue( PyQt_PyObject )"), p)
        self.emit(SIGNAL("ProgressValue( PyQt_PyObject )"), self.featcount)

        if self.error is None:
            # Checking uniqueness
            y = np.bincount(all_ids)
            if np.max(y) > 1:
                self.error = 'IDs are not unique.'

        if self.error is None:
            self.emit(SIGNAL("ProgressText ( PyQt_PyObject )"),
                      "Loading data from layer")
            self.emit(SIGNAL("ProgressValue( PyQt_PyObject )"), 0)

            self.graph = Graph()

            all_types = [
                np.int64, np.int64, np.int64, np.float64, np.float64, np.int64
            ]
            all_titles = [
                'link_id', 'a_node', 'b_node', 'length_ab', 'length_ba',
                'direction'
            ]

            dict_field = {}
            for k in self.skims:
                a, b, t = self.skims[k]
                all_types.append(np.float64)
                all_types.append(np.float64)
                all_titles.append((k + '_ab').encode('ascii', 'ignore'))
                all_titles.append((k + '_ba').encode('ascii', 'ignore'))

                dict_field[k + '_ab'] = a
                if self.bidirectional:
                    dict_field[k + '_ba'] = b
                else:
                    dict_field[k + '_ba'] = -1

            dt = [(t, d) for t, d in zip(all_titles, all_types)]

            anode = self.netlayer.fieldNameIndex('A_Node')
            bnode = self.netlayer.fieldNameIndex('B_Node')
            data = []

            if self.selected_only:
                self.features = self.netlayer.selectedFeatures()
            else:
                self.features = self.netlayer.getFeatures()

            p = 0
            for feat in self.features:
                line = []
                line.append(feat.attributes()[self.linkid])
                line.append(feat.attributes()[anode])
                line.append(feat.attributes()[bnode])
                line.append(feat.attributes()[self.ablength])
                if self.bidirectional:
                    line.append(feat.attributes()[self.balength])
                    line.append(feat.attributes()[self.directionfield])
                else:
                    line.append(-1)
                    line.append(1)

                # We append the skims now
                for k in all_titles:
                    if k in dict_field:
                        if dict_field[k] >= 0:
                            line.append(feat.attributes()[dict_field[k]])
                        else:
                            line.append(-1)

                for k in line:
                    if k == NULL:
                        t = ''
                        for j in line:
                            t = t + ',' + str(j)
                        self.error = 'Field with NULL value - ID:' + str(
                            line[0]) + "  /  " + t
                        break
                if self.error is not None:
                    break
                data.append(line)

                p += 1
                if p % 50 == 0:
                    self.emit(SIGNAL("ProgressValue( PyQt_PyObject )"), p)

            if self.error is None:
                network = np.asarray(data)
                del data

                self.graph.network = np.zeros(network.shape[0], dtype=dt)
                for k, t in enumerate(dt):
                    self.graph.network[t[0]] = network[:, k].astype(t[1])
                del network

                self.graph.type_loaded = 'NETWORK'
                self.graph.status = 'OK'
                self.graph.network_ok = True
                self.graph.prepare_graph()
                self.graph.__source__ = None
                self.graph.__field_name__ = None
                self.graph.__layer_name__ = None

        self.emit(SIGNAL("FinishedThreadedProcedure( PyQt_PyObject )"), None)
Beispiel #37
0
    def __init__(self, iface):
        QtWidgets.QDialog.__init__(self)
        self.iface = iface
        self.setupUi(self)
        self.path = standard_path()
        self.output_path = None
        self.temp_path = None
        self.error = None
        self.report = None
        self.method = {}
        self.matrices = OrderedDict()
        self.skims = []
        self.matrix = None
        self.graph = Graph()
        self.results = AssignmentResults()
        self.block_centroid_flows = None
        self.worker_thread = None

        # Signals for the matrix_procedures tab
        self.but_load_new_matrix.clicked.connect(self.find_matrices)

        # Signals from the Network tab
        self.load_graph_from_file.clicked.connect(self.load_graph)

        # Signals for the algorithm tab
        self.progressbar0.setVisible(False)
        self.progressbar0.setValue(0)
        self.progress_label0.setVisible(False)

        self.do_assignment.clicked.connect(self.run)
        self.cancel_all.clicked.connect(self.exit_procedure)
        self.select_output_folder.clicked.connect(self.choose_folder_for_outputs)

        self.cb_choose_algorithm.addItem('All-Or-Nothing')
        self.cb_choose_algorithm.currentIndexChanged.connect(self.changing_algorithm)

        # slots for skim tab
        self.but_build_query.clicked.connect(partial(self.build_query, 'select link'))

        self.changing_algorithm()

        # path file
        self.path_file = OutputType()

        # Queries
        tables = [self.select_link_list, self.list_link_extraction]
        for table in tables:
            table.setColumnWidth(0, 280)
            table.setColumnWidth(1, 40)
            table.setColumnWidth(2, 150)
            table.setColumnWidth(3, 40)

        self.graph_properties_table.setColumnWidth(0, 190)
        self.graph_properties_table.setColumnWidth(1, 240)

        # critical link
        self.but_build_query.clicked.connect(partial(self.build_query, 'select link'))
        self.do_select_link.stateChanged.connect(self.set_behavior_special_analysis)
        self.tot_crit_link_queries = 0
        self.critical_output = OutputType()

        # link flow extraction
        self.but_build_query_extract.clicked.connect(partial(self.build_query, 'Link flow extraction'))
        self.do_extract_link_flows.stateChanged.connect(self.set_behavior_special_analysis)
        self.tot_link_flow_extract = 0
        self.link_extract = OutputType()

        # Disabling resources not yet implemented
        self.do_select_link.setEnabled(False)
        self.but_build_query.setEnabled(False)
        self.select_link_list.setEnabled(False)
        self.skim_list_table.setEnabled(False)

        self.do_extract_link_flows.setEnabled(False)
        self.but_build_query_extract.setEnabled(False)
        self.list_link_extraction.setEnabled(False)
        self.new_matrix_to_assign()

        self.table_matrix_list.setColumnWidth(0, 135)
        self.table_matrix_list.setColumnWidth(1, 135)
        self.table_matrices_to_assign.setColumnWidth(0, 125)
        self.table_matrices_to_assign.setColumnWidth(1, 125)
        self.skim_list_table.setColumnWidth(0, 70)
        self.skim_list_table.setColumnWidth(1, 490)
Beispiel #38
0
class TestGraph(TestCase):
    def test_create_from_geography(self):
        self.graph = Graph()
        self.graph.create_from_geography(
            test_network,
            "link_id",
            "dir",
            "distance",
            centroids=centroids,
            skim_fields=[],
            anode="A_NODE",
            bnode="B_NODE",
        )
        self.graph.set_graph(cost_field="distance")
        self.graph.set_blocked_centroid_flows(block_centroid_flows=True)
        self.graph.set_skimming("distance")

    def test_prepare_graph(self):
        self.test_create_from_geography()
        self.graph.prepare_graph(centroids)

        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)
        if not np.array_equal(self.graph.graph, reference_graph.graph):
            self.fail("Reference graph and newly-prepared graph are not equal")

    def test_set_graph(self):
        self.test_prepare_graph()
        self.graph.set_graph(cost_field="distance")
        self.graph.set_blocked_centroid_flows(block_centroid_flows=True)
        if self.graph.num_zones != centroids.shape[0]:
            self.fail("Number of centroids not properly set")
        if self.graph.num_links != 222:
            self.fail("Number of links not properly set")
        if self.graph.num_nodes != 93:
            self.fail("Number of nodes not properly set - " +
                      str(self.graph.num_nodes))

    def test_save_to_disk(self):
        self.test_create_from_geography()
        self.graph.save_to_disk(join(path_test, "aequilibrae_test_graph.aeg"))
        self.graph_id = self.graph.__id__
        self.graph_version = self.graph.__version__

    def test_load_from_disk(self):
        self.test_save_to_disk()
        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)

        new_graph = Graph()
        new_graph.load_from_disk(join(path_test, "aequilibrae_test_graph.aeg"))

        comparisons = [
            ("Graph", new_graph.graph, reference_graph.graph),
            ("b_nodes", new_graph.b_node, reference_graph.b_node),
            ("Forward-Star", new_graph.fs, reference_graph.fs),
            ("cost", new_graph.cost, reference_graph.cost),
            ("centroids", new_graph.centroids, reference_graph.centroids),
            ("skims", new_graph.skims, reference_graph.skims),
            ("link ids", new_graph.ids, reference_graph.ids),
            ("Network", new_graph.network, reference_graph.network),
            ("All Nodes", new_graph.all_nodes, reference_graph.all_nodes),
            ("Nodes to indices", new_graph.nodes_to_indices,
             reference_graph.nodes_to_indices),
        ]

        for comparison, newg, refg in comparisons:
            if not np.array_equal(newg, refg):
                self.fail(
                    "Reference %s and %s created and saved to disk are not equal"
                    % (comparison, comparison))

        comparisons = [
            ("nodes", new_graph.num_nodes, reference_graph.num_nodes),
            ("links", new_graph.num_links, reference_graph.num_links),
            ("zones", new_graph.num_zones, reference_graph.num_zones),
            ("block through centroids", new_graph.block_centroid_flows,
             reference_graph.block_centroid_flows),
            ("Graph ID", new_graph.__id__, self.graph_id),
            ("Graph Version", new_graph.__version__, self.graph_version),
        ]

        for comparison, newg, refg in comparisons:
            if newg != refg:
                self.fail(
                    "Reference %s and %s created and saved to disk are not equal"
                    % (comparison, comparison))

    def test_available_skims(self):
        self.test_set_graph()
        if self.graph.available_skims() != ["distance"]:
            self.fail("Skim availability with problems")

    def test_exclude_links(self):
        p = Project()
        p.load(siouxfalls_project)
        p.network.build_graphs()

        g = p.network.graphs['c']  # type: Graph

        # excludes a link before any setting or preparation
        g.exclude_links([12])

        g.set_graph('distance')
        r1 = PathResults()
        r1.prepare(g)
        r1.compute_path(1, 14)
        self.assertEqual(list(r1.path), [2, 6, 10, 34])

        # We exclude one link that we know was part of the last shortest path
        g.exclude_links([10])
        r2 = PathResults()
        r2.prepare(g)
        r2.compute_path(1, 14)
        self.assertEqual(list(r2.path), [2, 7, 36, 34])

        p.conn.close()