Beispiel #1
0
    def test_make_node_shared(self):
        """Make sure we can provide `OpFromGraph.make_node` new shared inputs and get a valid `OpFromGraph`."""

        x = at.scalar("x")
        y = shared(1.0, name="y")

        test_ofg = OpFromGraph([x], [x + y], on_unused_input="ignore")
        assert test_ofg.shared_inputs == [y]

        out = test_ofg(x)

        y_clone = y.clone()
        assert y_clone != y
        y_clone.name = "y_clone"

        out_new = test_ofg.make_node(*(out.owner.inputs[:1] +
                                       [y_clone])).outputs[0]

        assert "on_unused_input" in out_new.owner.op.kwargs
        assert out_new.owner.op.shared_inputs == [y_clone]

        out_fn = function([x], out_new)
        assert np.array_equal(out_fn(1.0), 2.0)

        y_clone.set_value(2.0)
        assert np.array_equal(out_fn(1.0), 3.0)
Beispiel #2
0
    def test_clone(self):
        x, y, z = matrices("xyz")

        ofg = OpFromGraph([x], [2 * x])

        ofg_clone = ofg.clone()

        assert ofg_clone.fgraph is not ofg.fgraph
        assert ofg_clone.fgraph.outputs != ofg.fgraph.outputs
        assert equal_computations(ofg_clone.fgraph.outputs, ofg.fgraph.outputs)
Beispiel #3
0
    def __init__(self):
        x, y, z = scalars("xyz")
        e = x * y
        op = OpFromGraph([x, y], [e])
        e2 = op(x, y) + z
        op2 = OpFromGraph([x, y, z], [e2])
        e3 = op2(x, y, z) + z

        self.inputs = [x, y, z]
        self.outputs = [e3]
Beispiel #4
0
    def test_valid_input(self):
        x, y, z = matrices("xyz")

        with pytest.raises(TypeError):
            OpFromGraph((x,), (x,))

        with pytest.raises(TypeError):
            OpFromGraph([1], [1])

        with pytest.raises(TypeError):
            OpFromGraph([x, as_tensor(1)], [x])

        with pytest.raises(NotImplementedError):
            OpFromGraph([x], [x], updates={})
Beispiel #5
0
def test_debugprint():
    x, y, z = matrices("xyz")
    e = x + y * z
    op = OpFromGraph([x, y, z], [e])
    out = op(x, y, z)

    output_str = debugprint(out, file="str")
    lines = output_str.split("\n")

    exp_res = """OpFromGraph{inline=False} [id A]
 |x [id B]
 |y [id C]
 |z [id D]

Inner graphs:

OpFromGraph{inline=False} [id A]
 >Elemwise{add,no_inplace} [id E]
 > |*0-<TensorType(float64, (None, None))> [id F]
 > |Elemwise{mul,no_inplace} [id G]
 >   |*1-<TensorType(float64, (None, None))> [id H]
 >   |*2-<TensorType(float64, (None, None))> [id I]
"""

    for truth, out in zip(exp_res.split("\n"), lines):
        assert truth.strip() == out.strip()
Beispiel #6
0
    def __init__(self):
        x, y, z = scalars("xyz")
        e = at.sigmoid((x + y + z)**2)
        op = OpFromGraph([x, y, z], [e])
        e2 = op(x, y, z)

        self.inputs = [x, y, z]
        self.outputs = [e2]
Beispiel #7
0
 def test_compute_test_value(self):
     x = scalar("x")
     x.tag.test_value = np.array(1.0, dtype=config.floatX)
     op = OpFromGraph([x], [x**3])
     y = scalar("y")
     y.tag.test_value = np.array(1.0, dtype=config.floatX)
     f = op(y)
     grad_f = grad(f, y)
     assert grad_f.tag.test_value is not None
Beispiel #8
0
    def test_shared_to_nonshared_input(self):
        """Make sure that shared variables can be replaced with non-shared variables."""
        x = at.scalar("x")
        y = shared(1.0, name="y")

        test_ofg = OpFromGraph([], [y])
        assert test_ofg.shared_inputs == [y]

        out_1_fn = function([], test_ofg())
        res_1 = out_1_fn()

        assert np.array_equal(res_1, 1.0)

        test_ofg_new = test_ofg.make_node(x)
        assert test_ofg_new.op.shared_inputs == []

        out_2_fn = function([x], test_ofg_new.outputs[0])
        res_2 = out_2_fn(np.array(1.0, dtype=config.floatX))

        assert np.array_equal(res_2, 1.0)
Beispiel #9
0
    def test_shared_with_constant_input(self):
        """Make sure that a constant input can be given to an `OpFromGraph` instance."""
        x = at.scalar("x")
        y = shared(1.0, name="y")

        test_ofg = OpFromGraph([x], [x + y])
        assert test_ofg.shared_inputs == [y]

        out = test_ofg(at.as_tensor(1.0, dtype=config.floatX))

        out_fn = function([], out)
        assert np.array_equal(out_fn(), 2.0)
Beispiel #10
0
    def test_infer_shape(self):
        # test infer shape does not need to against inline case
        # since the Op is remove during optimization phase
        x = matrix("x")
        y = matrix("y")
        o1 = x + y
        o2 = x * y
        op_graph = OpFromGraph([x, y], [o1, o2])

        q = matrix("q")
        p = matrix("p")
        self._compile_and_check(
            [q, p],
            op_graph(q, p),
            [
                np.ones([3, 4], dtype=config.floatX),
                np.ones([3, 4], dtype=config.floatX),
            ],
            OpFromGraph,
        )

        # Make sure `OpFromGraph.infer_shape` can handle objects without a
        # shape
        x = MyVariable("x")
        y = matrix("y")
        z = as_tensor([1, 2])

        op_graph = OpFromGraph([x, y, z], [x, y])

        op_var = op_graph(x, y, z)

        fg = FunctionGraph(outputs=[op_var[1]], clone=False)
        opt_res = optimize_graph(fg, custom_opt=ShapeOptimizer())

        assert opt_res.shape_feature.shape_of[x] is None
        assert opt_res.shape_feature.shape_of[z][0].data == 2
Beispiel #11
0
    def local_transform(fgraph, node):
        if node in nodes_seen:
            return False

        # importing Scan into module scope would be circular
        from aesara.compile.builders import OpFromGraph
        from aesara.scan.op import Scan

        if isinstance(node.op, (Scan, OpFromGraph)):
            # recurse on the inner graph
            (
                new_inner_inputs,
                new_outer_inputs,
                new_inner_outputs,
            ) = _map_variables_inner(
                wrapped_replacer,
                inner_inputs=node.op.inputs,
                outer_inputs=node.inputs,
                inner_outputs=node.op.outputs,
                containing_op=node.op,
            )
            # reinstantiate the op
            if isinstance(node.op, Scan):
                new_op = Scan(
                    new_inner_inputs,
                    new_inner_outputs,
                    node.op.info,
                    node.op.mode,
                    # FIXME: infer this someday?
                    typeConstructor=None,
                )
            elif isinstance(node.op, OpFromGraph):
                new_op = OpFromGraph(new_inner_inputs, new_inner_outputs,
                                     **node.op.kwargs)
            # make a new node to replace the old one
            new_node = new_op.make_node(*new_outer_inputs)
            nodes_seen.add(new_node)
            return new_node.outputs
        else:
            nodes_seen.add(node)
            replacements = [wrapped_replacer(o) for o in node.outputs]

            # Add inputs to replacement graphs as inputs to this `fgraph`
            for i in graph_inputs(replacements):
                fgraph.add_input(i)

            return replacements
Beispiel #12
0
    def test_nested_OpFromGraph_shared(self):

        y = aesara.shared(1.0, name="y")

        test_ofg = OpFromGraph([], [y])

        def inner_func(x):
            out, _ = aesara.scan(lambda: test_ofg(), n_steps=x)
            return out

        out, _ = aesara.scan(inner_func, sequences=[at.arange(1, 2)])

        _ = aesara.function([], test_ofg())

        out_fn = aesara.function([], out)

        assert np.array_equal(out_fn(), [[1.0]])
Beispiel #13
0
    def test_infer_shape(self):
        # test infer shape does not need to against inline case
        # since the Op is remove during optimization phase
        x = matrix("x")
        y = matrix("y")
        o1 = x + y
        o2 = x * y
        op_graph = OpFromGraph([x, y], [o1, o2])

        q = matrix("q")
        p = matrix("p")
        self._compile_and_check(
            [q, p],
            op_graph(q, p),
            [
                np.ones([3, 4], dtype=config.floatX),
                np.ones([3, 4], dtype=config.floatX),
            ],
            OpFromGraph,
        )
Beispiel #14
0
    def test_outputs_consistency(self):
        """Make sure that `OpFromGraph.fn` doesn't change the value of `OpFromGraph.inner_outputs`."""

        x = scalar("x")
        op = OpFromGraph([x], [x**2 / x], mode="FAST_RUN")

        # Confirm that the inner-graph is as expected
        assert equal_computations(op.inner_outputs, [x**2 / x],
                                  op.inner_inputs, [x])

        # These outputs of the compiled `op.fgraph` should differ from the
        # original, uncompiled `op.fgraph` outputs
        fn = op.fn
        new_inputs = fn.maker.fgraph.inputs
        new_outputs = fn.maker.fgraph.outputs
        assert not equal_computations(new_outputs, [x**2 / x], new_inputs, [x])

        # The original `op.fgraph` outputs should stay the same, though
        assert equal_computations(op.inner_outputs, [x**2 / x],
                                  op.inner_inputs, [x])
Beispiel #15
0
    def test_OpFromGraph_shared(self):
        """Make sure that a simple `OpFromGraph` with a shared variable can be pushed out."""

        y = shared(1.0, name="y")

        test_ofg = OpFromGraph([], [1 + y])

        def inner_func():
            return test_ofg()

        out, out_updates = aesara.scan(inner_func, n_steps=10)

        out_fn = function([], out, updates=out_updates)

        res = out_fn()
        assert np.array_equal(res, np.repeat(2.0, 10))

        y.set_value(2.0)

        res = out_fn()
        assert np.array_equal(res, np.repeat(3.0, 10))
Beispiel #16
0
    def test_valid_input(self):
        x, y, z = matrices("xyz")

        with pytest.raises(ValueError, match="Expected at least.*"):
            OpFromGraph([x], [x])()

        with pytest.raises(ValueError, match=r"Expected 1 input\(s\)"):
            OpFromGraph([x], [x]).make_node()

        with pytest.raises(TypeError):
            OpFromGraph((x, ), (x, ))

        with pytest.raises(TypeError):
            OpFromGraph([1], [1])

        with pytest.raises(TypeError):
            OpFromGraph([x, as_tensor(1)], [x])

        with pytest.raises(TypeError):
            OpFromGraph([shared(1)], [1])

        with pytest.raises(NotImplementedError):
            OpFromGraph([x], [x], updates={})
Beispiel #17
0
def MvNormalLogp():
    """Compute the log pdf of a multivariate normal distribution.

    This should be used in MvNormal.logp once Theano#5908 is released.

    Parameters
    ----------
    cov: aet.matrix
        The covariance matrix.
    delta: aet.matrix
        Array of deviations from the mean.
    """
    cov = aet.matrix("cov")
    cov.tag.test_value = floatX(np.eye(3))
    delta = aet.matrix("delta")
    delta.tag.test_value = floatX(np.zeros((2, 3)))

    solve_lower = Solve(A_structure="lower_triangular")
    solve_upper = Solve(A_structure="upper_triangular")
    cholesky = Cholesky(lower=True, on_error="nan")

    n, k = delta.shape
    n, k = f(n), f(k)
    chol_cov = cholesky(cov)
    diag = aet.nlinalg.diag(chol_cov)
    ok = aet.all(diag > 0)

    chol_cov = aet.switch(ok, chol_cov, aet.fill(chol_cov, 1))
    delta_trans = solve_lower(chol_cov, delta.T).T

    result = n * k * aet.log(f(2) * np.pi)
    result += f(2) * n * aet.sum(aet.log(diag))
    result += (delta_trans**f(2)).sum()
    result = f(-0.5) * result
    logp = aet.switch(ok, result, -np.inf)

    def dlogp(inputs, gradients):
        (g_logp, ) = gradients
        cov, delta = inputs

        g_logp.tag.test_value = floatX(1.0)
        n, k = delta.shape

        chol_cov = cholesky(cov)
        diag = aet.nlinalg.diag(chol_cov)
        ok = aet.all(diag > 0)

        chol_cov = aet.switch(ok, chol_cov, aet.fill(chol_cov, 1))
        delta_trans = solve_lower(chol_cov, delta.T).T

        inner = n * aet.eye(k) - aet.dot(delta_trans.T, delta_trans)
        g_cov = solve_upper(chol_cov.T, inner)
        g_cov = solve_upper(chol_cov.T, g_cov.T)

        tau_delta = solve_upper(chol_cov.T, delta_trans.T)
        g_delta = tau_delta.T

        g_cov = aet.switch(ok, g_cov, -np.nan)
        g_delta = aet.switch(ok, g_delta, -np.nan)

        return [-0.5 * g_cov * g_logp, -g_delta * g_logp]

    return OpFromGraph([cov, delta], [logp], grad_overrides=dlogp, inline=True)
Beispiel #18
0
    def test_missing_input(self):
        x = at.lscalar("x")

        with pytest.raises(MissingInputError):
            OpFromGraph([], [x])