Beispiel #1
0
 def test_gpu_eigh_opt(self):
     A = fmatrix("A")
     fn = aesara.function([A], eigh(A), mode=mode_with_gpu)
     assert any([
         isinstance(node.op, GpuMagmaEigh)
         for node in fn.maker.fgraph.toposort()
     ])
Beispiel #2
0
def test_jax_basic_multiout():
    rng = np.random.default_rng(213234)

    M = rng.normal(size=(3, 3))
    X = M.dot(M.T)

    x = matrix("x")

    outs = aet_nlinalg.eig(x)
    out_fg = FunctionGraph([x], outs)

    def assert_fn(x, y):
        np.testing.assert_allclose(x.astype(config.floatX), y, rtol=1e-3)

    compare_jax_and_py(out_fg, [X.astype(config.floatX)], assert_fn=assert_fn)

    outs = aet_nlinalg.eigh(x)
    out_fg = FunctionGraph([x], outs)
    compare_jax_and_py(out_fg, [X.astype(config.floatX)], assert_fn=assert_fn)

    outs = aet_nlinalg.qr(x, mode="full")
    out_fg = FunctionGraph([x], outs)
    compare_jax_and_py(out_fg, [X.astype(config.floatX)], assert_fn=assert_fn)

    outs = aet_nlinalg.qr(x, mode="reduced")
    out_fg = FunctionGraph([x], outs)
    compare_jax_and_py(out_fg, [X.astype(config.floatX)], assert_fn=assert_fn)

    outs = aet_nlinalg.svd(x)
    out_fg = FunctionGraph([x], outs)
    compare_jax_and_py(out_fg, [X.astype(config.floatX)], assert_fn=assert_fn)
Beispiel #3
0
def test_jax_basic_multiout():

    np.random.seed(213234)
    M = np.random.normal(size=(3, 3))
    X = M.dot(M.T)

    x = matrix("x")

    outs = aet_nlinalg.eig(x)
    out_fg = FunctionGraph([x], outs)

    def assert_fn(x, y):
        np.testing.assert_allclose(x.astype(config.floatX), y, rtol=1e-3)

    compare_jax_and_py(out_fg, [X.astype(config.floatX)], assert_fn=assert_fn)

    outs = aet_nlinalg.eigh(x)
    out_fg = FunctionGraph([x], outs)
    compare_jax_and_py(out_fg, [X.astype(config.floatX)], assert_fn=assert_fn)

    outs = aet_nlinalg.qr(x, mode="full")
    out_fg = FunctionGraph([x], outs)
    compare_jax_and_py(out_fg, [X.astype(config.floatX)], assert_fn=assert_fn)

    outs = aet_nlinalg.qr(x, mode="reduced")
    out_fg = FunctionGraph([x], outs)
    compare_jax_and_py(out_fg, [X.astype(config.floatX)], assert_fn=assert_fn)

    outs = aet_nlinalg.svd(x)
    out_fg = FunctionGraph([x], outs)
    compare_jax_and_py(out_fg, [X.astype(config.floatX)], assert_fn=assert_fn)

    # Test that a single output of a multi-output `Op` can be used as input to
    # another `Op`
    x = dvector()
    mx, amx = MaxAndArgmax([0])(x)
    out = mx * amx
    out_fg = FunctionGraph([x], [out])
    compare_jax_and_py(out_fg, [np.r_[1, 2]])