Beispiel #1
0
    def test_args(self):
        # Test that arguments to RandomFunction are honored
        rf2 = RandomFunction(np.random.RandomState.uniform, tensor.dvector)
        rf4 = RandomFunction(np.random.RandomState.uniform,
                             tensor.dvector,
                             inplace=True)
        rng_R = random_state_type()

        # use make_node to override some of the self.args
        post_r2, out2 = rf2(rng_R, (4, ), -2, 2)  # NOT INPLACE
        post_r4, out4 = rf4(rng_R, (4, ), -4, 4)  # INPLACE
        post_r2_4, out2_4 = rf2(rng_R, (4, ), -4.0, 2)  # NOT INPLACE
        post_r2_4_4, out2_4_4 = rf2(rng_R, (4, ), -4.0, 4.0)  # NOT INPLACE

        # configure out4 to be computed inplace
        # The update expression means that the random state rng_R will
        # be maintained by post_r4
        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r4,
                    mutable=True,
                )
            ],
            [out2, out4, out2_4, out2_4_4],
            accept_inplace=True,
        )

        f2, f4, f2_4, f2_4_4 = f()
        f2b, f4b, f2_4b, f2_4_4b = f()

        # print f2
        # print f4
        # print f2_4
        # print f2_4_4

        # print f2b
        # print f4b
        # print f2_4b
        # print f2_4_4b

        # setting bounds is same as multiplying by 2
        assert np.allclose(f2 * 2, f4), (f2, f4)

        # retrieving from non-inplace generator
        # is same as inplace one for first call
        assert np.allclose(f2_4_4, f4), (f2_4_4, f4)

        # f4 changes from call to call, that the update has worked
        assert not np.allclose(f4, f4b), (f4, f4b)
Beispiel #2
0
    def test_no_inplace(self):
        # Test that when not running inplace, the RandomState is not updated
        rf = RandomFunction("uniform", tensor.dvector)
        rng_R = random_state_type()

        post_r, out = rf(rng_R, (3, ), 0.0, 1.0)
        f = compile.function([rng_R], [post_r, out])
        rng = np.random.RandomState(utt.fetch_seed())

        rng0, val0 = f(rng)
        rng_ = np.random.RandomState(utt.fetch_seed())
        # rng should still be in a fresh state
        assert rng_R.type.values_eq(rng, rng_)
        # rng0 should be in an updated state
        assert not rng_R.type.values_eq(rng, rng0)

        f2 = compile.function(
            [compile.In(rng_R, value=rng, update=post_r, mutable=False)],
            [post_r, out])
        rng2, val2 = f2()
        # rng should be in a fresh state
        assert rng_R.type.values_eq(rng, rng_)
        # rng2 should be in an updated state
        assert not rng_R.type.values_eq(rng, rng2)
        # The updated state should be the same for both functions
        assert rng_R.type.values_eq(rng2, rng0)

        rng3, val3 = f2()
        # rng2 should not have changed
        assert rng_R.type.values_eq(rng2, rng0)
        # rng3 should be an updated again version of rng2
        assert not rng_R.type.values_eq(rng3, rng2)
        assert not rng_R.type.values_eq(rng3, rng)
Beispiel #3
0
    def test_inplace_optimization(self):
        # Test that FAST_RUN includes the random_make_inplace optimization
        # inplace = False
        rf2 = RandomFunction(np.random.RandomState.uniform, tensor.dvector)
        rng_R = random_state_type()

        # If calling RandomFunction directly, all args have to be specified,
        # because shape will have to be moved to the end
        post_r2, out2 = rf2(rng_R, (4, ), 0.0, 1.0)

        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r2,
                    mutable=True,
                )
            ],
            out2,
            mode="FAST_RUN",
        )  # DEBUG_MODE can't pass the id-based
        # test below

        # test that the RandomState object stays the same from function call to
        # function call, but that the values returned change from call to call.

        id0 = id(f[rng_R])
        val0 = f()
        assert id0 == id(f[rng_R])
        val1 = f()
        assert id0 == id(f[rng_R])

        assert not np.allclose(val0, val1)
Beispiel #4
0
 def randomfunction(random_state,
                    size=(),
                    low=0.0,
                    high=0.0,
                    ndim=None):
     ndim, size, bcast = raw_random._infer_ndim_bcast(ndim, size)
     if ndim_added < 0:
         bcast = bcast[:ndim_added]
     else:
         bcast = bcast + ((False, ) * ndim_added)
     assert len(bcast) == ndim + ndim_added
     op = RandomFunction(
         "uniform",
         tensor.TensorType(dtype="float64", broadcastable=bcast),
         ndim_added=ndim_added,
     )
     return op(random_state, size, low, high)
Beispiel #5
0
    def test_basic_usage(self):
        rf = RandomFunction(np.random.RandomState.uniform, tensor.dvector)
        assert not rf.inplace
        assert getattr(rf, "destroy_map", {}) == {}

        rng_R = random_state_type()

        # If calling RandomFunction directly, all args have to be specified,
        # because shape will have to be moved to the end
        post_r, out = rf(rng_R, (4, ), 0.0, 1.0)

        assert out.type == tensor.dvector

        f = compile.function([rng_R], out)

        rng_state0 = np.random.RandomState(utt.fetch_seed())

        f_0 = f(rng_state0)
        f_1 = f(rng_state0)

        assert np.all(f_0 == f_1)
Beispiel #6
0
 def test_inplace_norun(self):
     rf = RandomFunction(np.random.RandomState.uniform,
                         tensor.dvector,
                         inplace=True)
     assert rf.inplace
     assert getattr(rf, "destroy_map", {}) != {}
Beispiel #7
0
    def test_permutation_helper(self):
        # Test that raw_random.permutation_helper generates the same
        # results as numpy,
        # and that the 'ndim_added' keyword behaves correctly.

        # permutation_helper needs "ndim_added=1", because its output
        # is one dimension more than its "shape" argument (and there's
        # no way to determine that automatically).
        # Check the working case, over two calls to see if the random
        # state is correctly updated.
        rf = RandomFunction(permutation_helper,
                            tensor.imatrix,
                            8,
                            ndim_added=1)
        rng_R = random_state_type()
        post_r, out = rf(rng_R, (7, ), 8)

        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r,
                    mutable=True,
                )
            ],
            [out],
            accept_inplace=True,
        )

        numpy_rng = np.random.RandomState(utt.fetch_seed())
        val0 = f()
        val1 = f()
        # numpy_rng.permutation outputs one vector at a time,
        # so we call it iteratively to generate all the samples.
        numpy_val0 = np.asarray([numpy_rng.permutation(8) for i in range(7)])
        numpy_val1 = np.asarray([numpy_rng.permutation(8) for i in range(7)])
        assert np.all(val0 == numpy_val0)
        assert np.all(val1 == numpy_val1)

        # This call lacks "ndim_added=1", so ndim_added defaults to 0.
        # A ValueError should be raised.
        rf0 = RandomFunction(permutation_helper, tensor.imatrix, 8)
        post_r0, out0 = rf0(rng_R, (7, ), 8)
        f0 = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r0,
                    mutable=True,
                )
            ],
            [out0],
            accept_inplace=True,
        )
        with pytest.raises(ValueError):
            f0()

        # Here, ndim_added is 2 instead of 1. A ValueError should be raised.
        rf2 = RandomFunction(permutation_helper,
                             tensor.imatrix,
                             8,
                             ndim_added=2)
        post_r2, out2 = rf2(rng_R, (7, ), 8)
        f2 = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r2,
                    mutable=True,
                )
            ],
            [out2],
            accept_inplace=True,
        )
        with pytest.raises(ValueError):
            f2()