Beispiel #1
0
    session_length=SEQ_LENGTH,
    experience_replay=True,
)

#get reference Qvalues according to Qlearning algorithm
from agentnet.learning import qlearning

#crop rewards to [-1,+1] to avoid explosion.
rewards = replay.rewards / 10.

#loss for Qlearning =
#(Q(s,a) - (r+ gamma*r' + gamma^2*r'' + ...  +gamma^10*Q(s_{t+10},a_max)))^2
elwise_mse_loss = qlearning.get_elementwise_objective(
    qvalues_seq,
    replay.actions[0],
    rewards,
    replay.is_alive,
    qvalues_target=old_qvalues_seq,
    gamma_or_gammas=0.99,
    n_steps=10)

#mean over all batches and time ticks
loss = elwise_mse_loss.mean()
# Compute weight updates
updates = lasagne.updates.adam(loss, weights, learning_rate=1e-4)
#compile train function
train_step = theano.function([], loss, updates=updates)

action_layer.epsilon.set_value(0)
untrained_reward = np.mean(
    pool.evaluate(save_path="./records",
                  record_video=False,
Beispiel #2
0
def test_space_invaders(
    game_title='SpaceInvaders-v0',
    n_parallel_games=3,
    replay_seq_len=2,
):
    """
    :param game_title: name of atari game in Gym
    :param n_parallel_games: how many games we run in parallel
    :param replay_seq_len: how long is one replay session from a batch
    """

    atari = gym.make(game_title)
    atari.reset()

    # Game Parameters
    n_actions = atari.action_space.n
    observation_shape = (None, ) + atari.observation_space.shape
    del atari
    # ##### Agent observations

    # image observation at current tick goes here
    observation_layer = InputLayer(observation_shape, name="images input")

    # reshape to [batch, color, x, y] to allow for convolutional layers to work correctly
    observation_reshape = DimshuffleLayer(observation_layer, (0, 3, 1, 2))

    # Agent memory states
    window_size = 3

    # prev state input
    prev_window = InputLayer(
        (None, window_size) + tuple(observation_reshape.output_shape[1:]),
        name="previous window state")

    # our window
    window = WindowAugmentation(observation_reshape,
                                prev_window,
                                name="new window state")

    memory_dict = {window: prev_window}

    # ##### Neural network body
    # you may use any other lasagne layers, including convolutions, batch_norms, maxout, etc

    # pixel-wise maximum over the temporal window (to avoid flickering)
    window_max = ExpressionLayer(window,
                                 lambda a: a.max(axis=1),
                                 output_shape=(None, ) +
                                 window.output_shape[2:])

    # a simple lasagne network (try replacing with any other lasagne network and see what works best)
    nn = DenseLayer(window_max, num_units=50, name='dense0')

    # Agent policy and action picking
    q_eval = DenseLayer(nn,
                        num_units=n_actions,
                        nonlinearity=lasagne.nonlinearities.linear,
                        name="QEvaluator")

    #fakes for a2c
    policy_eval = DenseLayer(nn,
                             num_units=n_actions,
                             nonlinearity=lasagne.nonlinearities.softmax,
                             name="a2c action probas")
    state_value_eval = DenseLayer(nn,
                                  num_units=1,
                                  nonlinearity=None,
                                  name="a2c state values")
    # resolver
    resolver = ProbabilisticResolver(policy_eval, name="resolver")

    # agent
    agent = Agent(observation_layer, memory_dict,
                  (q_eval, policy_eval, state_value_eval), resolver)

    # Since it's a single lasagne network, one can get it's weights, output, etc
    weights = lasagne.layers.get_all_params(resolver, trainable=True)

    # Agent step function
    # # Create and manage a pool of atari sessions to play with

    pool = EnvPool(agent, game_title, n_parallel_games)

    observation_log, action_log, reward_log, _, _, _ = pool.interact(50)

    # # experience replay pool
    # Create an environment with all default parameters
    env = SessionPoolEnvironment(observations=observation_layer,
                                 actions=resolver,
                                 agent_memories=agent.agent_states)

    def update_pool(env, pool, n_steps=100):
        """ a function that creates new sessions and ads them into the pool
        throwing the old ones away entirely for simplicity"""

        preceding_memory_states = list(pool.prev_memory_states)

        # get interaction sessions
        observation_tensor, action_tensor, reward_tensor, _, is_alive_tensor, _ = pool.interact(
            n_steps=n_steps)

        # load them into experience replay environment
        env.load_sessions(observation_tensor, action_tensor, reward_tensor,
                          is_alive_tensor, preceding_memory_states)

    # load first  sessions
    update_pool(env, pool, replay_seq_len)

    # A more sophisticated way of training is to store a large pool of sessions and train on random batches of them.
    # ### Training via experience replay

    # get agent's Q-values, policy, etc obtained via experience replay
    _env_states, _observations, _memories, _imagined_actions, estimators = agent.get_sessions(
        env,
        session_length=replay_seq_len,
        batch_size=env.batch_size,
        experience_replay=True,
    )
    (q_values_sequence, policy_sequence, value_sequence) = estimators

    # Evaluating loss function

    scaled_reward_seq = env.rewards
    # For SpaceInvaders, however, not scaling rewards is at least working

    elwise_mse_loss = 0.

    #1-step algos
    for algo in qlearning, sarsa:
        elwise_mse_loss += algo.get_elementwise_objective(
            q_values_sequence,
            env.actions[0],
            scaled_reward_seq,
            env.is_alive,
            gamma_or_gammas=0.99,
        )
    #qlearning_n_step
    for n in (1, 3, replay_seq_len - 1, replay_seq_len, replay_seq_len + 1,
              None):
        elwise_mse_loss += qlearning.get_elementwise_objective(
            q_values_sequence,
            env.actions[0],
            scaled_reward_seq,
            env.is_alive,
            gamma_or_gammas=0.99,
            n_steps=n)

    #a2c n_step

    elwise_mse_loss += a2c.get_elementwise_objective(policy_sequence,
                                                     value_sequence[:, :, 0],
                                                     env.actions[0],
                                                     scaled_reward_seq,
                                                     env.is_alive,
                                                     gamma_or_gammas=0.99,
                                                     n_steps=3)

    # compute mean over "alive" fragments
    mse_loss = elwise_mse_loss.sum() / env.is_alive.sum()

    # regularize network weights
    reg_l2 = regularize_network_params(resolver, l2) * 10**-4

    loss = mse_loss + reg_l2

    # Compute weight updates
    updates = lasagne.updates.adadelta(loss, weights, learning_rate=0.01)

    # mean session reward
    mean_session_reward = env.rewards.sum(axis=1).mean()

    # # Compile train and evaluation functions

    print('compiling')
    train_fun = theano.function([], [loss, mean_session_reward],
                                updates=updates)
    evaluation_fun = theano.function(
        [], [loss, mse_loss, reg_l2, mean_session_reward])
    print("I've compiled!")

    # # Training loop

    for epoch_counter in range(10):
        update_pool(env, pool, replay_seq_len)
        loss, avg_reward = train_fun()
        full_loss, q_loss, l2_penalty, avg_reward_current = evaluation_fun()

        print("epoch %i,loss %.5f, rewards: %.5f " %
              (epoch_counter, full_loss, avg_reward_current))
        print("rec %.3f reg %.3f" % (q_loss, l2_penalty))
Beispiel #3
0
def test_memory(game_title='SpaceInvaders-v0',
                        n_parallel_games=3,
                        replay_seq_len=2,
                        ):
    """
    :param game_title: name of atari game in Gym
    :param n_parallel_games: how many games we run in parallel
    :param replay_seq_len: how long is one replay session from a batch
    """

    atari = gym.make(game_title)
    atari.reset()

    # Game Parameters
    n_actions = atari.action_space.n
    observation_shape = (None,) + atari.observation_space.shape
    action_names = atari.get_action_meanings()
    del atari
    # ##### Agent observations

    # image observation at current tick goes here
    observation_layer = InputLayer(observation_shape, name="images input")

    # reshape to [batch, color, x, y] to allow for convolutional layers to work correctly
    observation_reshape = DimshuffleLayer(observation_layer, (0, 3, 1, 2))

    # Agent memory states
    
    memory_dict = OrderedDict([])
    
    
    ###Window
    window_size = 3

    # prev state input
    prev_window = InputLayer((None, window_size) + tuple(observation_reshape.output_shape[1:]),
                             name="previous window state")
    

    # our window
    window = WindowAugmentation(observation_reshape,
                                prev_window,
                                name="new window state")
    
    # pixel-wise maximum over the temporal window (to avoid flickering)
    window_max = ExpressionLayer(window,
                                 lambda a: a.max(axis=1),
                                 output_shape=(None,) + window.output_shape[2:])

    
    memory_dict[window] = prev_window
    
    ###Stack
    #prev stack
    stack_w,stack_h = 4, 5
    stack_inputs = DenseLayer(observation_reshape,stack_w,name="prev_stack")
    stack_controls = DenseLayer(observation_reshape,3,
                              nonlinearity=lasagne.nonlinearities.softmax,
                              name="prev_stack")
    prev_stack = InputLayer((None,stack_h,stack_w),
                             name="previous stack state")
    stack = StackAugmentation(stack_inputs,prev_stack, stack_controls)
    memory_dict[stack] = prev_stack
    
    stack_top = lasagne.layers.SliceLayer(stack,0,1)

    
    ###RNN preset
    
    prev_rnn = InputLayer((None,16),
                             name="previous RNN state")
    new_rnn = RNNCell(prev_rnn,observation_reshape)
    memory_dict[new_rnn] = prev_rnn
    
    ###GRU preset
    prev_gru = InputLayer((None,16),
                             name="previous GRUcell state")
    new_gru = GRUCell(prev_gru,observation_reshape)
    memory_dict[new_gru] = prev_gru
    
    ###GRUmemorylayer
    prev_gru1 = InputLayer((None,15),
                             name="previous GRUcell state")
    new_gru1 = GRUMemoryLayer(15,observation_reshape,prev_gru1)
    memory_dict[new_gru1] = prev_gru1
    
    #LSTM with peepholes
    prev_lstm0_cell = InputLayer((None,13),
                             name="previous LSTMCell hidden state [with peepholes]")
    
    prev_lstm0_out = InputLayer((None,13),
                             name="previous LSTMCell output state [with peepholes]")

    new_lstm0_cell,new_lstm0_out = LSTMCell(prev_lstm0_cell,prev_lstm0_out,
                                            input_or_inputs = observation_reshape,
                                            peepholes=True,name="newLSTM1 [with peepholes]")
    
    memory_dict[new_lstm0_cell] = prev_lstm0_cell
    memory_dict[new_lstm0_out] = prev_lstm0_out


    #LSTM without peepholes
    prev_lstm1_cell = InputLayer((None,14),
                             name="previous LSTMCell hidden state [no peepholes]")
    
    prev_lstm1_out = InputLayer((None,14),
                             name="previous LSTMCell output state [no peepholes]")

    new_lstm1_cell,new_lstm1_out = LSTMCell(prev_lstm1_cell,prev_lstm1_out,
                                            input_or_inputs = observation_reshape,
                                            peepholes=False,name="newLSTM1 [no peepholes]")
    
    memory_dict[new_lstm1_cell] = prev_lstm1_cell
    memory_dict[new_lstm1_out] = prev_lstm1_out
    
    ##concat everything
    
    for i in [flatten(window_max),stack_top,new_rnn,new_gru,new_gru1]:
        print(i.output_shape)
    all_memory = concat([flatten(window_max),stack_top,new_rnn,new_gru,new_gru1,new_lstm0_out,new_lstm1_out,])
    
    
    

    # ##### Neural network body
    # you may use any other lasagne layers, including convolutions, batch_norms, maxout, etc


    # a simple lasagne network (try replacing with any other lasagne network and see what works best)
    nn = DenseLayer(all_memory, num_units=50, name='dense0')

    # Agent policy and action picking
    q_eval = DenseLayer(nn,
                        num_units=n_actions,
                        nonlinearity=lasagne.nonlinearities.linear,
                        name="QEvaluator")

    # resolver
    resolver = EpsilonGreedyResolver(q_eval, epsilon=0.1, name="resolver")

    # agent
    agent = Agent(observation_layer,
                  memory_dict,
                  q_eval, resolver)

    # Since it's a single lasagne network, one can get it's weights, output, etc
    weights = lasagne.layers.get_all_params(resolver, trainable=True)

    # Agent step function
    print('compiling react')
    applier_fun = agent.get_react_function()

    # a nice pythonic interface
    def step(observation, prev_memories='zeros', batch_size=n_parallel_games):
        """ returns actions and new states given observation and prev state
        Prev state in default setup should be [prev window,]"""
        # default to zeros
        if prev_memories == 'zeros':
            prev_memories = [np.zeros((batch_size,) + tuple(mem.output_shape[1:]),
                                      dtype='float32')
                             for mem in agent.agent_states]
        res = applier_fun(np.array(observation), *prev_memories)
        action = res[0]
        memories = res[1:]
        return action, memories

    # # Create and manage a pool of atari sessions to play with

    pool = GamePool(game_title, n_parallel_games)

    observation_log, action_log, reward_log, _, _, _ = pool.interact(step, 50)

    print(np.array(action_names)[np.array(action_log)[:3, :5]])

    # # experience replay pool
    # Create an environment with all default parameters
    env = SessionPoolEnvironment(observations=observation_layer,
                                 actions=resolver,
                                 agent_memories=agent.agent_states)

    def update_pool(env, pool, n_steps=100):
        """ a function that creates new sessions and ads them into the pool
        throwing the old ones away entirely for simplicity"""

        preceding_memory_states = list(pool.prev_memory_states)

        # get interaction sessions
        observation_tensor, action_tensor, reward_tensor, _, is_alive_tensor, _ = pool.interact(step, n_steps=n_steps)

        # load them into experience replay environment
        env.load_sessions(observation_tensor, action_tensor, reward_tensor, is_alive_tensor, preceding_memory_states)

    # load first  sessions
    update_pool(env, pool, replay_seq_len)

    # A more sophisticated way of training is to store a large pool of sessions and train on random batches of them.
    # ### Training via experience replay

    # get agent's Q-values obtained via experience replay
    _env_states, _observations, _memories, _imagined_actions, q_values_sequence = agent.get_sessions(
        env,
        session_length=replay_seq_len,
        batch_size=env.batch_size,
        optimize_experience_replay=True,
    )

    # Evaluating loss function

    scaled_reward_seq = env.rewards
    # For SpaceInvaders, however, not scaling rewards is at least working


    elwise_mse_loss = qlearning.get_elementwise_objective(q_values_sequence,
                                                          env.actions[0],
                                                          scaled_reward_seq,
                                                          env.is_alive,
                                                          gamma_or_gammas=0.99, )

    # compute mean over "alive" fragments
    mse_loss = elwise_mse_loss.sum() / env.is_alive.sum()

    # regularize network weights
    reg_l2 = regularize_network_params(resolver, l2) * 10 ** -4

    loss = mse_loss + reg_l2

    # Compute weight updates
    updates = lasagne.updates.adadelta(loss, weights, learning_rate=0.01)

    # mean session reward
    mean_session_reward = env.rewards.sum(axis=1).mean()

    # # Compile train and evaluation functions

    print('compiling')
    train_fun = theano.function([], [loss, mean_session_reward], updates=updates)
    evaluation_fun = theano.function([], [loss, mse_loss, reg_l2, mean_session_reward])
    print("I've compiled!")

    # # Training loop

    for epoch_counter in range(10):
        update_pool(env, pool, replay_seq_len)
        loss, avg_reward = train_fun()
        full_loss, q_loss, l2_penalty, avg_reward_current = evaluation_fun()

        print("epoch %i,loss %.5f, rewards: %.5f " % (
            epoch_counter, full_loss, avg_reward_current))
        print("rec %.3f reg %.3f" % (q_loss, l2_penalty))
Beispiel #4
0
def test_memory(
    game_title='SpaceInvaders-v0',
    n_parallel_games=3,
    replay_seq_len=2,
):
    """
    :param game_title: name of atari game in Gym
    :param n_parallel_games: how many games we run in parallel
    :param replay_seq_len: how long is one replay session from a batch
    """

    atari = gym.make(game_title)
    atari.reset()

    # Game Parameters
    n_actions = atari.action_space.n
    observation_shape = (None, ) + atari.observation_space.shape
    action_names = atari.get_action_meanings()
    del atari
    # ##### Agent observations

    # image observation at current tick goes here
    observation_layer = InputLayer(observation_shape, name="images input")

    # reshape to [batch, color, x, y] to allow for convolutional layers to work correctly
    observation_reshape = DimshuffleLayer(observation_layer, (0, 3, 1, 2))

    # Agent memory states

    memory_dict = OrderedDict([])

    ###Window
    window_size = 3

    # prev state input
    prev_window = InputLayer(
        (None, window_size) + tuple(observation_reshape.output_shape[1:]),
        name="previous window state")

    # our window
    window = WindowAugmentation(observation_reshape,
                                prev_window,
                                name="new window state")

    # pixel-wise maximum over the temporal window (to avoid flickering)
    window_max = ExpressionLayer(window,
                                 lambda a: a.max(axis=1),
                                 output_shape=(None, ) +
                                 window.output_shape[2:])

    memory_dict[window] = prev_window

    ###Stack
    #prev stack
    stack_w, stack_h = 4, 5
    stack_inputs = DenseLayer(observation_reshape, stack_w, name="prev_stack")
    stack_controls = DenseLayer(observation_reshape,
                                3,
                                nonlinearity=lasagne.nonlinearities.softmax,
                                name="prev_stack")
    prev_stack = InputLayer((None, stack_h, stack_w),
                            name="previous stack state")
    stack = StackAugmentation(stack_inputs, prev_stack, stack_controls)
    memory_dict[stack] = prev_stack

    stack_top = lasagne.layers.SliceLayer(stack, 0, 1)

    ###RNN preset

    prev_rnn = InputLayer((None, 16), name="previous RNN state")
    new_rnn = RNNCell(prev_rnn, observation_reshape)
    memory_dict[new_rnn] = prev_rnn

    ###GRU preset
    prev_gru = InputLayer((None, 16), name="previous GRUcell state")
    new_gru = GRUCell(prev_gru, observation_reshape)
    memory_dict[new_gru] = prev_gru

    ###GRUmemorylayer
    prev_gru1 = InputLayer((None, 15), name="previous GRUcell state")
    new_gru1 = GRUMemoryLayer(15, observation_reshape, prev_gru1)
    memory_dict[new_gru1] = prev_gru1

    #LSTM with peepholes
    prev_lstm0_cell = InputLayer(
        (None, 13), name="previous LSTMCell hidden state [with peepholes]")

    prev_lstm0_out = InputLayer(
        (None, 13), name="previous LSTMCell output state [with peepholes]")

    new_lstm0_cell, new_lstm0_out = LSTMCell(
        prev_lstm0_cell,
        prev_lstm0_out,
        input_or_inputs=observation_reshape,
        peepholes=True,
        name="newLSTM1 [with peepholes]")

    memory_dict[new_lstm0_cell] = prev_lstm0_cell
    memory_dict[new_lstm0_out] = prev_lstm0_out

    #LSTM without peepholes
    prev_lstm1_cell = InputLayer(
        (None, 14), name="previous LSTMCell hidden state [no peepholes]")

    prev_lstm1_out = InputLayer(
        (None, 14), name="previous LSTMCell output state [no peepholes]")

    new_lstm1_cell, new_lstm1_out = LSTMCell(
        prev_lstm1_cell,
        prev_lstm1_out,
        input_or_inputs=observation_reshape,
        peepholes=False,
        name="newLSTM1 [no peepholes]")

    memory_dict[new_lstm1_cell] = prev_lstm1_cell
    memory_dict[new_lstm1_out] = prev_lstm1_out

    ##concat everything

    for i in [flatten(window_max), stack_top, new_rnn, new_gru, new_gru1]:
        print(i.output_shape)
    all_memory = concat([
        flatten(window_max),
        stack_top,
        new_rnn,
        new_gru,
        new_gru1,
        new_lstm0_out,
        new_lstm1_out,
    ])

    # ##### Neural network body
    # you may use any other lasagne layers, including convolutions, batch_norms, maxout, etc

    # a simple lasagne network (try replacing with any other lasagne network and see what works best)
    nn = DenseLayer(all_memory, num_units=50, name='dense0')

    # Agent policy and action picking
    q_eval = DenseLayer(nn,
                        num_units=n_actions,
                        nonlinearity=lasagne.nonlinearities.linear,
                        name="QEvaluator")

    # resolver
    resolver = EpsilonGreedyResolver(q_eval, epsilon=0.1, name="resolver")

    # agent
    agent = Agent(observation_layer, memory_dict, q_eval, resolver)

    # Since it's a single lasagne network, one can get it's weights, output, etc
    weights = lasagne.layers.get_all_params(resolver, trainable=True)

    # Agent step function
    print('compiling react')
    applier_fun = agent.get_react_function()

    # a nice pythonic interface
    def step(observation, prev_memories='zeros', batch_size=n_parallel_games):
        """ returns actions and new states given observation and prev state
        Prev state in default setup should be [prev window,]"""
        # default to zeros
        if prev_memories == 'zeros':
            prev_memories = [
                np.zeros((batch_size, ) + tuple(mem.output_shape[1:]),
                         dtype='float32') for mem in agent.agent_states
            ]
        res = applier_fun(np.array(observation), *prev_memories)
        action = res[0]
        memories = res[1:]
        return action, memories

    # # Create and manage a pool of atari sessions to play with

    pool = GamePool(game_title, n_parallel_games)

    observation_log, action_log, reward_log, _, _, _ = pool.interact(step, 50)

    print(np.array(action_names)[np.array(action_log)[:3, :5]])

    # # experience replay pool
    # Create an environment with all default parameters
    env = SessionPoolEnvironment(observations=observation_layer,
                                 actions=resolver,
                                 agent_memories=agent.agent_states)

    def update_pool(env, pool, n_steps=100):
        """ a function that creates new sessions and ads them into the pool
        throwing the old ones away entirely for simplicity"""

        preceding_memory_states = list(pool.prev_memory_states)

        # get interaction sessions
        observation_tensor, action_tensor, reward_tensor, _, is_alive_tensor, _ = pool.interact(
            step, n_steps=n_steps)

        # load them into experience replay environment
        env.load_sessions(observation_tensor, action_tensor, reward_tensor,
                          is_alive_tensor, preceding_memory_states)

    # load first  sessions
    update_pool(env, pool, replay_seq_len)

    # A more sophisticated way of training is to store a large pool of sessions and train on random batches of them.
    # ### Training via experience replay

    # get agent's Q-values obtained via experience replay
    _env_states, _observations, _memories, _imagined_actions, q_values_sequence = agent.get_sessions(
        env,
        session_length=replay_seq_len,
        batch_size=env.batch_size,
        optimize_experience_replay=True,
    )

    # Evaluating loss function

    scaled_reward_seq = env.rewards
    # For SpaceInvaders, however, not scaling rewards is at least working

    elwise_mse_loss = qlearning.get_elementwise_objective(
        q_values_sequence,
        env.actions[0],
        scaled_reward_seq,
        env.is_alive,
        gamma_or_gammas=0.99,
    )

    # compute mean over "alive" fragments
    mse_loss = elwise_mse_loss.sum() / env.is_alive.sum()

    # regularize network weights
    reg_l2 = regularize_network_params(resolver, l2) * 10**-4

    loss = mse_loss + reg_l2

    # Compute weight updates
    updates = lasagne.updates.adadelta(loss, weights, learning_rate=0.01)

    # mean session reward
    mean_session_reward = env.rewards.sum(axis=1).mean()

    # # Compile train and evaluation functions

    print('compiling')
    train_fun = theano.function([], [loss, mean_session_reward],
                                updates=updates)
    evaluation_fun = theano.function(
        [], [loss, mse_loss, reg_l2, mean_session_reward])
    print("I've compiled!")

    # # Training loop

    for epoch_counter in range(10):
        update_pool(env, pool, replay_seq_len)
        loss, avg_reward = train_fun()
        full_loss, q_loss, l2_penalty, avg_reward_current = evaluation_fun()

        print("epoch %i,loss %.5f, rewards: %.5f " %
              (epoch_counter, full_loss, avg_reward_current))
        print("rec %.3f reg %.3f" % (q_loss, l2_penalty))
def test_space_invaders(game_title='SpaceInvaders-v0',
                        n_parallel_games=3,
                        replay_seq_len=2,
                        ):
    """
    :param game_title: name of atari game in Gym
    :param n_parallel_games: how many games we run in parallel
    :param replay_seq_len: how long is one replay session from a batch
    """

    atari = gym.make(game_title)
    atari.reset()

    # Game Parameters
    n_actions = atari.action_space.n
    observation_shape = (None,) + atari.observation_space.shape
    del atari
    # ##### Agent observations

    # image observation at current tick goes here
    observation_layer = InputLayer(observation_shape, name="images input")

    # reshape to [batch, color, x, y] to allow for convolutional layers to work correctly
    observation_reshape = DimshuffleLayer(observation_layer, (0, 3, 1, 2))

    # Agent memory states
    window_size = 3

    # prev state input
    prev_window = InputLayer((None, window_size) + tuple(observation_reshape.output_shape[1:]),
                             name="previous window state")

    # our window
    window = WindowAugmentation(observation_reshape,
                                prev_window,
                                name="new window state")

    memory_dict = {window: prev_window}

    # ##### Neural network body
    # you may use any other lasagne layers, including convolutions, batch_norms, maxout, etc

    # pixel-wise maximum over the temporal window (to avoid flickering)
    window_max = ExpressionLayer(window,
                                 lambda a: a.max(axis=1),
                                 output_shape=(None,) + window.output_shape[2:])

    # a simple lasagne network (try replacing with any other lasagne network and see what works best)
    nn = DenseLayer(window_max, num_units=50, name='dense0')

    # Agent policy and action picking
    q_eval = DenseLayer(nn,
                        num_units=n_actions,
                        nonlinearity=lasagne.nonlinearities.linear,
                        name="QEvaluator")

    #fakes for a2c
    policy_eval = DenseLayer(nn,
                        num_units=n_actions,
                        nonlinearity=lasagne.nonlinearities.softmax,
                        name="a2c action probas")
    state_value_eval = DenseLayer(nn,
                        num_units=1,
                        nonlinearity=None,
                        name="a2c state values")
    # resolver
    resolver = ProbabilisticResolver(policy_eval,  name="resolver")

    # agent
    agent = Agent(observation_layer,
                  memory_dict,
                  (q_eval,policy_eval,state_value_eval), resolver)

    # Since it's a single lasagne network, one can get it's weights, output, etc
    weights = lasagne.layers.get_all_params(resolver, trainable=True)

    # Agent step function
    # # Create and manage a pool of atari sessions to play with

    pool = EnvPool(agent,game_title, n_parallel_games)

    observation_log, action_log, reward_log, _, _, _ = pool.interact(50)


    # # experience replay pool
    # Create an environment with all default parameters
    env = SessionPoolEnvironment(observations=observation_layer,
                                 actions=resolver,
                                 agent_memories=agent.agent_states)

    def update_pool(env, pool, n_steps=100):
        """ a function that creates new sessions and ads them into the pool
        throwing the old ones away entirely for simplicity"""

        preceding_memory_states = list(pool.prev_memory_states)

        # get interaction sessions
        observation_tensor, action_tensor, reward_tensor, _, is_alive_tensor, _ = pool.interact(n_steps=n_steps)

        # load them into experience replay environment
        env.load_sessions(observation_tensor, action_tensor, reward_tensor, is_alive_tensor, preceding_memory_states)

    # load first  sessions
    update_pool(env, pool, replay_seq_len)

    # A more sophisticated way of training is to store a large pool of sessions and train on random batches of them.
    # ### Training via experience replay

    # get agent's Q-values, policy, etc obtained via experience replay
    _env_states, _observations, _memories, _imagined_actions, estimators = agent.get_sessions(
        env,
        session_length=replay_seq_len,
        batch_size=env.batch_size,
        experience_replay=True,
    )
    (q_values_sequence,policy_sequence,value_sequence) = estimators

    # Evaluating loss function

    scaled_reward_seq = env.rewards
    # For SpaceInvaders, however, not scaling rewards is at least working

    elwise_mse_loss = 0.
    
    #1-step algos
    for algo in qlearning,sarsa:
        elwise_mse_loss += algo.get_elementwise_objective(q_values_sequence,
                                                              env.actions[0],
                                                              scaled_reward_seq,
                                                              env.is_alive,
                                                              gamma_or_gammas=0.99, )
    #qlearning_n_step
    for n in (1,3,replay_seq_len-1, replay_seq_len, replay_seq_len+1,None):
        elwise_mse_loss += qlearning.get_elementwise_objective(q_values_sequence,
                                                              env.actions[0],
                                                              scaled_reward_seq,
                                                              env.is_alive,
                                                              gamma_or_gammas=0.99,
                                                              n_steps=n)
        
    #a2c n_step
    
    elwise_mse_loss += a2c.get_elementwise_objective(policy_sequence,
                                                            value_sequence[:,:,0],
                                                            env.actions[0],
                                                            scaled_reward_seq,
                                                            env.is_alive,
                                                            gamma_or_gammas=0.99,
                                                            n_steps=3)
    
    

    # compute mean over "alive" fragments
    mse_loss = elwise_mse_loss.sum() / env.is_alive.sum()

    # regularize network weights
    reg_l2 = regularize_network_params(resolver, l2) * 10 ** -4

    loss = mse_loss + reg_l2

    # Compute weight updates
    updates = lasagne.updates.adadelta(loss, weights, learning_rate=0.01)

    # mean session reward
    mean_session_reward = env.rewards.sum(axis=1).mean()

    # # Compile train and evaluation functions

    print('compiling')
    train_fun = theano.function([], [loss, mean_session_reward], updates=updates)
    evaluation_fun = theano.function([], [loss, mse_loss, reg_l2, mean_session_reward])
    print("I've compiled!")

    # # Training loop

    for epoch_counter in range(10):
        update_pool(env, pool, replay_seq_len)
        loss, avg_reward = train_fun()
        full_loss, q_loss, l2_penalty, avg_reward_current = evaluation_fun()

        print("epoch %i,loss %.5f, rewards: %.5f " % (
            epoch_counter, full_loss, avg_reward_current))
        print("rec %.3f reg %.3f" % (q_loss, l2_penalty))