def execute(trial=False):
        '''Run a statistical analysis gathering data comparing carbon efficacy to emissions per capita'''
        startTime = datetime.datetime.now()

        client = dml.pymongo.MongoClient()
        repo = client.repo
        repo.authenticate('aheckman_jfimbres', 'aheckman_jfimbres')

        efficacy = repo.aheckman_jfimbres.carbon_efficacy.find({})
        epc = repo.aheckman_jfimbres.emissions_per_capita.find({})

        eff = t.project(efficacy, lambda x: x)
        epc = t.project(epc, lambda x: x)

        eff = [list(x.values()) for x in eff]
        epc = [list(x.values()) for x in epc]
        eff = eff[0][1:]
        epc = epc[0][1:]

        corr = scipy.stats.pearsonr(eff, epc)
        corr = {"Stats": corr}

        repo.dropCollection("Stats")
        repo.createCollection("Stats")
        repo['aheckman_jfimbres.Stats'].insert(corr)

        repo.logout()

        endTime = datetime.datetime.now()

        return {"start": startTime, "end": endTime}
Beispiel #2
0
    def execute(trial = False):
        '''Return data that shows carbon efficacy alongside partisan climate opinion data'''
        startTime = datetime.datetime.now()

        client = dml.pymongo.MongoClient()
        repo = client.repo
        repo.authenticate('aheckman_jfimbres', 'aheckman_jfimbres')

        efficacy = repo.aheckman_jfimbres.carbon_efficacy.find({})
        opinions = repo.aheckman_jfimbres.partisan_map.find({})

        state_ops = t.select(opinions, lambda x: x['GeoType'] == 'State')
        ops_by_state = t.project(state_ops, lambda x: [x['GeoName'], x['Group'],x['TotalPop'], x['congress'], x['congressOppose'],
                                                       x['corporations'], x['corporationsOppose'], x['citizens'],  x['citizensOppose'],
                                                       x['regulate'], x['regulateOppose'], x['exp'], x['expOppose'],
                                                       x['prienv'], x['prienvOppose'], x['happening'], x['happeningOppose'],
                                                       x['human'], x['humanOppose'], x['consensus'], x['consensusOppose'],
                                                       x['worried'], x['worriedOppose'], x['harmUS'], x['harmUSOppose']])
        eff = t.project(efficacy, lambda x: x)
        ops_w_eff = t.project(ops_by_state, lambda x: [x[0], (eff[0][x[0]], x[1:])])
        ops_w_eff = t.aggregate(ops_w_eff, lambda x: [x[0], x[1][1]])

        repo.dropCollection("opinion_by_efficacy")
        repo.createCollection("opinion_by_efficacy")
        repo['aheckman_jfimbres.opinion_by_efficacy'].insert(dict(ops_w_eff))

        repo.logout()

        endTime = datetime.datetime.now()

        return {"start": startTime, "end": endTime}
    def execute(trial = False):
        '''Give the adjusted emissions per capita on a state-by-state basis'''
        startTime = datetime.datetime.now()

        client = dml.pymongo.MongoClient()
        repo = client.repo
        repo.authenticate('aheckman_jfimbres', 'aheckman_jfimbres')

        co2_adjusted = repo.aheckman_jfimbres.co2_adjusted.find({})
        c = repo.aheckman_jfimbres.census.find({})

        adj = t.project(t.select(co2_adjusted, lambda x: x['State'] in list_of_states), lambda x: (x['State'], x['2016']*1000000))
        pops = t.project(t.select(c, lambda x: x['NAME'] in list_of_states), lambda x: (x['NAME'], x['POPESTIMATE2017']))
        # adj is given in x millions, so it needs to be scaled up to match population, which is just given in x

        tons = t.aggregate(t.union(adj, pops), lambda vs: (vs[0]/vs[1]))
        epc = dict(t.project(tons, lambda t: (t[0], t[1])))

        repo.dropCollection("emissions_per_capita")
        repo.createCollection("emissions_per_capita")
        repo["aheckman_jfimbres.emissions_per_capita"].insert(epc)

        repo.logout()

        endTime = datetime.datetime.now()

        return {"start":startTime, "end":endTime}
Beispiel #4
0
    def execute(trial = False):
        '''Find the efficiency of carbon usage on a stat-by-state basis'''
        startTime = datetime.datetime.now()

        client = dml.pymongo.MongoClient()
        repo = client.repo
        repo.authenticate('aheckman_jfimbres', 'aheckman_jfimbres')

        co2_adjusted = repo.aheckman_jfimbres.co2_adjusted.find({})
        co2_unadjusted = repo.aheckman_jfimbres.co2_unadjusted.find({})
        carbon_intensity = repo.aheckman_jfimbres.carbon_intensity.find({})

        adj = t.project(t.select(co2_adjusted, lambda x: x['State'] in list_of_states), lambda x: (x['State'], x['2016']))
        unadj = t.project(t.select(co2_unadjusted, lambda x: x['State'] in list_of_states), lambda x: (x['State'], x['Total']))
        intense = t.project(t.select(carbon_intensity, lambda x: x['State'] in list_of_states), lambda x: (x['State'], x['2016']))

        emissions = t.aggregate(t.union(adj, unadj), np.mean)
        efficacy = dict(t.aggregate(t.union(emissions, intense), lambda v: (v[0]/v[1])))
        repo.dropCollection("carbon_efficacy")
        repo.createCollection("carbon_efficacy")
        repo['aheckman_jfimbres.carbon_efficacy'].insert(efficacy)

        repo.logout()

        endTime = datetime.datetime.now()

        return {"start":startTime, "end":endTime}
    def execute(trial=False):
        '''Run a statistical analysis gathering data comparing carbon efficacy to emissions per capita'''
        startTime = datetime.datetime.now()

        client = dml.pymongo.MongoClient()
        repo = client.repo
        repo.authenticate('aheckman_jfimbres', 'aheckman_jfimbres')

        ops_by_efficacy = repo.aheckman_jfimbres.opinion_by_efficacy.find({})
        ops = t.project(ops_by_efficacy, lambda x: x)
        ops = [list(x.values()) for x in ops]
        ops = ops[0][1:]

        #dem beliefs are ops[0][0][1]
        #rep beliefs are ops[0][1]

        q1 = []
        q2 = []
        q3 = []
        q4 = []
        q5 = []
        q6 = []
        q7 = []
        q8 = []
        q9 = []
        q10 = []
        q11 = []

        for i in range(len(ops)):
            q1 += ([ops[i][0][1][2],
                    ops[i][0][1][3]], [ops[i][1][2], ops[i][1][3]])
            q2 += ([ops[i][0][1][4],
                    ops[i][0][1][5]], [ops[i][1][4], ops[i][1][5]])
            q3 += ([ops[i][0][1][6],
                    ops[i][0][1][7]], [ops[i][1][6], ops[i][1][7]])
            q4 += ([ops[i][0][1][8],
                    ops[i][0][1][9]], [ops[i][1][8], ops[i][1][9]])
            q5 += ([ops[i][0][1][10],
                    ops[i][0][1][11]], [ops[i][1][10], ops[i][1][11]])
            q6 += ([ops[i][0][1][12],
                    ops[i][0][1][13]], [ops[i][1][12], ops[i][1][13]])
            q7 += ([ops[i][0][1][14],
                    ops[i][0][1][15]], [ops[i][1][14], ops[i][1][15]])
            q8 += ([ops[i][0][1][16],
                    ops[i][0][1][17]], [ops[i][1][16], ops[i][1][17]])
            q9 += ([ops[i][0][1][18],
                    ops[i][0][1][19]], [ops[i][1][18], ops[i][1][19]])
            q10 += ([ops[i][0][1][20],
                     ops[i][0][1][21]], [ops[i][1][20], ops[i][1][21]])
            q11 += ([ops[i][0][1][22],
                     ops[i][0][1][23]], [ops[i][1][22], ops[i][1][23]])

        k1 = KMeans(n_clusters=2, random_state=0).fit(q1)
        k2 = KMeans(n_clusters=2, random_state=0).fit(q2)
        k3 = KMeans(n_clusters=2, random_state=0).fit(q3)
        k4 = KMeans(n_clusters=2, random_state=0).fit(q4)
        k5 = KMeans(n_clusters=2, random_state=0).fit(q5)
        k6 = KMeans(n_clusters=2, random_state=0).fit(q6)
        k7 = KMeans(n_clusters=2, random_state=0).fit(q7)
        k8 = KMeans(n_clusters=2, random_state=0).fit(q8)
        k9 = KMeans(n_clusters=2, random_state=0).fit(q9)
        k10 = KMeans(n_clusters=2, random_state=0).fit(q10)
        k11 = KMeans(n_clusters=2, random_state=0).fit(q11)

        inertias = [
            k1.inertia_, k2.inertia_, k3.inertia_, k4.inertia_, k5.inertia_,
            k6.inertia_, k7.inertia_, k8.inertia_, k9.inertia_, k10.inertia_,
            k11.inertia_
        ]

        inertias = {"disagreement on each question": inertias}

        repo.dropCollection("k_means")
        repo.createCollection("k_means")
        repo['aheckman_jfimbres.k_means'].insert(inertias)

        repo.logout()

        endTime = datetime.datetime.now()

        return {"start": startTime, "end": endTime}
Beispiel #6
0
    def execute(trial=False):
        '''Run a statistical analysis gathering data comparing carbon efficacy to emissions per capita'''
        startTime = datetime.datetime.now()

        client = dml.pymongo.MongoClient()
        repo = client.repo
        repo.authenticate('aheckman_jfimbres', 'aheckman_jfimbres')

        ops_by_efficacy = repo.aheckman_jfimbres.opinion_by_efficacy.find({})
        ops = t.project(ops_by_efficacy, lambda x: x)
        ops = [list(x.values()) for x in ops]
        ops = ops[0][1:]

        #dem beliefs are ops[0][0][1]
        #rep beliefs are ops[0][1]

        q1 = []
        q2 = []
        q3 = []
        q4 = []
        q5 = []
        q6 = []
        q7 = []
        q8 = []
        q9 = []
        q10 = []
        q11 = []

        for i in range(len(ops)):
            q1 += ([ops[i][0][1][2],
                    ops[i][0][1][3]], [ops[i][1][2], ops[i][1][3]])
            q2 += ([ops[i][0][1][4],
                    ops[i][0][1][5]], [ops[i][1][4], ops[i][1][5]])
            q3 += ([ops[i][0][1][6],
                    ops[i][0][1][7]], [ops[i][1][6], ops[i][1][7]])
            q4 += ([ops[i][0][1][8],
                    ops[i][0][1][9]], [ops[i][1][8], ops[i][1][9]])
            q5 += ([ops[i][0][1][10],
                    ops[i][0][1][11]], [ops[i][1][10], ops[i][1][11]])
            q6 += ([ops[i][0][1][12],
                    ops[i][0][1][13]], [ops[i][1][12], ops[i][1][13]])
            q7 += ([ops[i][0][1][14],
                    ops[i][0][1][15]], [ops[i][1][14], ops[i][1][15]])
            q8 += ([ops[i][0][1][16],
                    ops[i][0][1][17]], [ops[i][1][16], ops[i][1][17]])
            q9 += ([ops[i][0][1][18],
                    ops[i][0][1][19]], [ops[i][1][18], ops[i][1][19]])
            q10 += ([ops[i][0][1][20],
                     ops[i][0][1][21]], [ops[i][1][20], ops[i][1][21]])
            q11 += ([ops[i][0][1][22],
                     ops[i][0][1][23]], [ops[i][1][22], ops[i][1][23]])

        k1 = KMeans(n_clusters=2, random_state=0).fit(q1)
        k2 = KMeans(n_clusters=2, random_state=0).fit(q2)
        k3 = KMeans(n_clusters=2, random_state=0).fit(q3)
        k4 = KMeans(n_clusters=2, random_state=0).fit(q4)
        k5 = KMeans(n_clusters=2, random_state=0).fit(q5)
        k6 = KMeans(n_clusters=2, random_state=0).fit(q6)
        k7 = KMeans(n_clusters=2, random_state=0).fit(q7)
        k8 = KMeans(n_clusters=2, random_state=0).fit(q8)
        k9 = KMeans(n_clusters=2, random_state=0).fit(q9)
        k10 = KMeans(n_clusters=2, random_state=0).fit(q10)
        k11 = KMeans(n_clusters=2, random_state=0).fit(q11)

        inertias = [
            k1.inertia_, k2.inertia_, k3.inertia_, k4.inertia_, k5.inertia_,
            k6.inertia_, k7.inertia_, k8.inertia_, k9.inertia_, k10.inertia_,
            k11.inertia_
        ]
        '''questions = ['q1', 'q2', 'q3', 'q4', 'q5', 'q6', 'q7', 'q8', 'q9', 'q_10', 'q_11']
        plt.figure()
        plt.bar(questions, inertias)
        plt.xlabel('Questions')
        plt.ylabel('Total distance between agreement')
        plt.title('Disagreement per question')
        plt.show()'''

        inertias = {"disagreement on each question": inertias}

        questions = {
            'Question 1': q1,
            'Question 2': q2,
            'Question 3': q3,
            'Question 4': q4,
            'Question 5': q5,
            'Question 6': q6,
            'Question 7': q7,
            'Question 8': q8,
            'Question 9': q9,
            'Question 10': q10,
            'Question 11': q11
        }

        repo.dropCollection("k_means")
        repo.createCollection("k_means")
        repo['aheckman_jfimbres.k_means'].insert(inertias)

        repo.dropCollection("questions")
        repo.createCollection("questions")
        repo['aheckman_jfimbres.questions'].insert(questions)

        repo.logout()

        endTime = datetime.datetime.now()

        return {"start": startTime, "end": endTime}