async def train(ctx, filename: str, memsize: int): try: with open("training_data/" + filename + ".txt", "r") as f: tdata = f.read() except IOError: await ctx.send("Error - Specified model does not exist.") return model = ai.train(tdata, memsize) with open("models/" + filename + "-" + str(memsize) + ".model", "w") as f: f.write(json.dumps([model, tdata])) await ctx.send("Done!")
parser_train = subparsers.add_parser( 'train', help= 'trains the system to detect traffic lights in an image given training samples' ) # command: predict; for predicting traffic lights given an input image parser_predict = subparsers.add_parser( 'predict', help='attempts to find all traffic lights in an image') parser_predict.add_argument('--path', help='path to image', required=True) # command: mine; for mining positive and negative examples from a given input image parser_mine = subparsers.add_parser( 'mine', help='tool for hard mining positive and negative training data') parser_mine.add_argument('--path', help='path to image', required=True) parser_mine.add_argument( '--use-predicted', help= 'whether or not to use the boxes that were predicted as positive samples', action='store_true') args = parser.parse_args() if args.subcmd == 'train': ai.train() elif args.subcmd == 'predict': ai.predict(path.expanduser(args.path)) elif args.subcmd == 'mine': ai.mine(path.expanduser(args.path), args.use_predicted)
cTile = tileController.getTile( index ) index += 1 nTile = tileController.getTile( index ) viewController.setTile( cTile, nTile ) viewController.updateEverything( ) """ for j in range(5): times = 0 index = 0 ai.totalReward = 0 for i in range(10000): if timeController.timeEvent(): if viewController.aiState: #move, rotate, rating = ai.makeMove( cTile ) ai.train(cTile) if not cTile.incY(): cTile.apply() if not gridController.checkForGameOver(): scoreController.tileReleased() cTile = nTile index += 1 nTile = tileController.getTile(index) viewController.setTile(cTile, nTile) else: times += 1 cTile = tileController.getTile(index) index += 1 nTile = tileController.getTile(index) viewController.setTile(cTile, nTile)
val = arg.split("=")[1] if data.get(key) != None: data[key] = val else: usage() else: usage() if sys.argv[1] == "train": if data["training-file"] == "stdin": tdata = input() else: with open(data["training-file"], "r") as f: tdata = f.read() model = ai.train(tdata, int(data["max-history"])) if data["model-file"] == "stdout": print(json.dumps(model)) else: with open(data["model-file"], "w") as f: f.write(json.dumps([model, tdata])) elif sys.argv[1] == "predict": if data["model-file"] == "stdin": model = input() else: with open(data["model-file"], "r") as f: model = json.loads(f.read())[0] size = 8
from io import BytesIO from PIL import Image import numpy as np import requests import ai ai_ = None flag = True while True: url = 'http://0.0.0.0:5000/image/verification' res = requests.get(url) image = Image.open(BytesIO(res.content)) image.show() length, width = image.size if flag: user = input('your chose:\n') if user == 'ai': url = 'http://0.0.0.0:5000/ai/{}'.format(ai_) flag = False res = requests.get(url) print(res.text) else: check_list = [[int(temp) for temp in user]] input_data = np.array(image) np.reshape(input_data, (length, width, 3)) print(check_list) ai_ = ai.train(length, width, [input_data], check_list) print(ai_)