Beispiel #1
0
class AIFlowMaster(object):
    """
    AI flow master.
    """
    def __init__(self, config_file: Text = None) -> None:
        """
        Set the master attribute according to the master config file.

        :param config_file: master configuration file.
        """
        super().__init__()
        self.config_file = config_file
        self.server = None
        self.master_config = MasterConfig()

    def start(self, is_block=False) -> None:
        """
        Start the AI flow master.

        :param is_block: AI flow master will run non-stop if True.
        """
        if self.config_file is not None:
            self.master_config.load_from_file(self.config_file)
        else:
            self.master_config.set_master_port(str(_PORT))
        global GLOBAL_MASTER_CONFIG
        GLOBAL_MASTER_CONFIG = self.master_config
        logging.info("AI Flow Master Config {}".format(GLOBAL_MASTER_CONFIG))
        self.server = AIFlowServer(
            store_uri=self.master_config.get_db_uri(),
            port=str(self.master_config.get_master_port()),
            start_default_notification=self.master_config.
            start_default_notification(),
            notification_uri=self.master_config.get_notification_uri())
        self.server.run(is_block=is_block)

    def stop(self, clear_sql_lite_db_file=True) -> None:
        """
        Stop the AI flow master.

        :param clear_sql_lite_db_file: If True, the sqlite database files will be deleted When the server stops working.
        """
        self.server.stop()
        if self.master_config.get_db_type(
        ) == DBType.SQLITE and clear_sql_lite_db_file:
            store = SqlAlchemyStore(self.master_config.get_db_uri())
            base.metadata.drop_all(store.db_engine)
            os.remove(self.master_config.get_sql_lite_db_file())

    def _clear_db(self):
        if self.master_config.get_db_type() == DBType.SQLITE:
            store = SqlAlchemyStore(self.master_config.get_db_uri())
            base.metadata.drop_all(store.db_engine)
            base.metadata.create_all(store.db_engine)
Beispiel #2
0
class TestTensorFlowIrisModel(unittest.TestCase):
    def setUp(self) -> None:
        if os.path.exists(_SQLITE_DB_FILE):
            os.remove(_SQLITE_DB_FILE)
        self.server = AIFlowServer(store_uri=_SQLITE_DB_URI, port=_PORT)
        self.server.run()
        self.client = AIFlowClient(server_uri='localhost:' + _PORT)

    def tearDown(self) -> None:
        self.client.stop_listen_event()
        self.server.stop()
        os.remove(_SQLITE_DB_FILE)

    def test_save_and_load_model(self):
        iris_model = fit_and_save_model()
        tf_graph = tf.Graph()
        registered_model = self.client.create_registered_model(
            model_name='iris_model',
            model_type=ModelType.SAVED_MODEL,
            model_desc='iris model')
        self.client.create_model_version(
            model_name=registered_model.model_name,
            model_path=iris_model.path,
            model_metric='http://metric',
            model_flavor=
            '{"meta_graph_tags":["serve"],"signature_def_map_key":"predict"}',
            version_desc='iris model')

        class IrisWatcher(EventWatcher):
            def process(self, notifications):
                for notification in notifications:
                    model_path = json.loads(
                        notification.value).get('_model_path')
                    model_flavor = json.loads(
                        notification.value).get('_model_flavor')
                    signature_def = tensorflow.load_model(
                        model_uri=model_path,
                        meta_graph_tags=json.loads(model_flavor).get(
                            'meta_graph_tags'),
                        signature_def_map_key=json.loads(model_flavor).get(
                            'signature_def_map_key'),
                        tf_session=tf.Session(graph=tf_graph))
                    for _, input_signature in signature_def.inputs.items():
                        t_input = tf_graph.get_tensor_by_name(
                            input_signature.name)
                        assert t_input is not None
                    for _, output_signature in signature_def.outputs.items():
                        t_output = tf_graph.get_tensor_by_name(
                            output_signature.name)
                        assert t_output is not None

        self.client.start_listen_event(key=registered_model.model_name,
                                       watcher=IrisWatcher())
 def setUpClass(cls) -> None:
     if os.path.exists(_SQLITE_DB_FILE):
         os.remove(_SQLITE_DB_FILE)
     cls.server = AIFlowServer(store_uri=_SQLITE_DB_URI, port=_PORT)
     cls.server.run()
     global client
     client = AIFlowClient(server_uri='localhost:' + _PORT)
Beispiel #4
0
    def start(self,
              is_block=False) -> None:
        """
        Start the AI flow master.

        :param is_block: AI flow master will run non-stop if True.
        """
        if self.config_file is not None:
            self.master_config.load_from_file(self.config_file)
        else:
            self.master_config.set_master_port(str(_PORT))
        global GLOBAL_MASTER_CONFIG
        GLOBAL_MASTER_CONFIG = self.master_config
        logging.info("AI Flow Master Config {}".format(GLOBAL_MASTER_CONFIG))
        if not self.master_config.get_enable_ha():
            self.server = AIFlowServer(
                store_uri=self.master_config.get_db_uri(),
                port=str(self.master_config.get_master_port()),
                start_default_notification=self.master_config.start_default_notification(),
                notification_uri=self.master_config.get_notification_uri())
        else:
            self.server = HighAvailableAIFlowServer(
                store_uri=self.master_config.get_db_uri(),
                port=str(self.master_config.get_master_port()),
                start_default_notification=self.master_config.start_default_notification(),
                notification_uri=self.master_config.get_notification_uri(),
                server_uri=self.master_config.get_master_ip() + ":" + self.master_config.get_master_port(),
                ttl_ms=self.master_config.get_ha_ttl_ms())
        self.server.run(is_block=is_block)
 def setUp(self):
     config = SchedulerConfig()
     config.set_scheduler_class_name(
         'ai_flow.test.scheduler.test_scheduling_service.MockScheduler')
     if os.path.exists(_SQLITE_DB_FILE):
         os.remove(_SQLITE_DB_FILE)
     self.server = AIFlowServer(store_uri=_SQLITE_DB_URI,
                                port=_PORT,
                                start_default_notification=False,
                                start_deploy_service=False,
                                start_meta_service=False,
                                start_metric_service=False,
                                start_model_center_service=False,
                                start_scheduling_service=True,
                                scheduler_config=config)
     self.server.run()
class TestSklearnModel(unittest.TestCase):
    def setUp(self) -> None:
        if os.path.exists(_SQLITE_DB_FILE):
            os.remove(_SQLITE_DB_FILE)
        self.server = AIFlowServer(store_uri=_SQLITE_DB_URI, port=_PORT)
        self.server.run()
        self.client = AIFlowClient(server_uri='localhost:' + _PORT)

    def tearDown(self) -> None:
        self.client.stop_listen_event()
        self.server.stop()
        os.remove(_SQLITE_DB_FILE)

    def test_save_and_load_model(self):
        knn_model = fit_model()
        model_path = tempfile.mkdtemp()
        if not os.path.exists(model_path):
            os.makedirs(model_path)
        model_path = os.path.join(model_path, 'model.pkl')
        save_model(sk_model=knn_model.model,
                   output_path=model_path,
                   serialization_format=SERIALIZATION_FORMAT_PICKLE)
        registered_model = self.client.create_registered_model(
            model_name='knn_model',
            model_type=ModelType.SAVED_MODEL,
            model_desc='knn model')
        self.client.create_model_version(
            model_name=registered_model.model_name,
            model_path=model_path,
            model_metric='http://metric',
            model_flavor='sklearn',
            version_desc='knn model')

        class KnnWatcher(EventWatcher):
            def process(self, notifications):
                for notification in notifications:
                    load_path = json.loads(
                        notification.value).get('_model_path')
                    reloaded_knn_model = sklearn.load_model(
                        model_uri=load_path)
                    numpy.testing.assert_array_equal(
                        knn_model.model.predict(knn_model.inference_data),
                        reloaded_knn_model.predict(knn_model.inference_data))
                    os.remove(load_path)

        self.client.start_listen_event(key=registered_model.model_name,
                                       watcher=KnnWatcher())
 def setUpClass(cls) -> None:
     if os.path.exists(_SQLITE_DB_FILE):
         os.remove(_SQLITE_DB_FILE)
     cls.server = AIFlowServer(store_uri=_SQLITE_DB_URI, port=_PORT)
     cls.sc_manager = cls.server.deploy_service.scheduler_manager
     cls.server.run()
     global client
     client = AIFlowClient(server_uri='localhost:' + _PORT)
     cls.ls_manager = cls.sc_manager.listener_manager
Beispiel #8
0
 def setUpClass(cls) -> None:
     print("TestAIFlowClientMySQL setUpClass")
     db_server_url = get_mysql_server_url()
     cls.db_name = 'test_aiflow_client'
     cls.engine = sqlalchemy.create_engine(db_server_url)
     cls.engine.execute('DROP DATABASE IF EXISTS %s' % cls.db_name)
     cls.engine.execute('CREATE DATABASE IF NOT EXISTS %s' % cls.db_name)
     cls.store_uri = '%s/%s' % (db_server_url, cls.db_name)
     cls.server = AIFlowServer(store_uri=cls.store_uri, port=_PORT)
     cls.server.run()
     test_client.client = AIFlowClient(server_uri='localhost:' + _PORT)
     test_client.client1 = AIFlowClient(server_uri='localhost:' + _PORT)
     test_client.client2 = AIFlowClient(server_uri='localhost:' + _PORT)
 def setUp(self) -> None:
     if os.path.exists(_SQLITE_DB_FILE):
         os.remove(_SQLITE_DB_FILE)
     self.server = AIFlowServer(store_uri=_SQLITE_DB_URI, port=_PORT)
     self.server.run()
     self.client = AIFlowClient(server_uri='localhost:' + _PORT)
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
#
import os
import sys
import tempfile

sys.path.append(os.path.abspath(os.path.join(os.getcwd(), "../../../..")))

from ai_flow.rest_endpoint.service.server import AIFlowServer

if __name__ == '__main__':
    fd, temp_dbfile = tempfile.mkstemp()
    os.close(fd)
    db_uri = '%s%s' % ('sqlite:///', temp_dbfile)
    server = AIFlowServer(store_uri=db_uri)
    server.run(is_block=True)
class TestSchedulingService(unittest.TestCase):
    def setUp(self):
        config = SchedulerConfig()
        config.set_scheduler_class_name(
            'ai_flow.test.scheduler.test_scheduling_service.MockScheduler')
        if os.path.exists(_SQLITE_DB_FILE):
            os.remove(_SQLITE_DB_FILE)
        self.server = AIFlowServer(store_uri=_SQLITE_DB_URI,
                                   port=_PORT,
                                   start_default_notification=False,
                                   start_deploy_service=False,
                                   start_meta_service=False,
                                   start_metric_service=False,
                                   start_model_center_service=False,
                                   start_scheduling_service=True,
                                   scheduler_config=config)
        self.server.run()

    def tearDown(self):
        self.server.stop()
        if os.path.exists(_SQLITE_DB_FILE):
            os.remove(_SQLITE_DB_FILE)

    # def test_submit_workflow(self):
    #     with mock.patch('ai_flow.test.scheduler.test_scheduling_service.MockScheduler') as mockScheduler:
    #         instance = mockScheduler.return_value
    #         instance.submit_workflow.return_value = WorkflowInfo(workflow_name='test_workflow')
    #         client = SchedulingClient("localhost:{}".format(_PORT))
    #         workflow = client.submit_workflow_to_scheduler(namespace='namespace', workflow_name='test_workflow')
    #         print(workflow)

    def test_delete_none_workflow(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.delete_workflow.return_value = None
            client = SchedulingClient("localhost:{}".format(_PORT))
            with self.assertRaises(Exception) as context:
                workflow = client.delete_workflow(
                    namespace='namespace', workflow_name='test_workflow')

    def test_delete_workflow(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.delete_workflow.return_value = WorkflowInfo(
                workflow_name='test_workflow')
            client = SchedulingClient("localhost:{}".format(_PORT))
            workflow = client.delete_workflow(namespace='namespace',
                                              workflow_name='test_workflow')
            self.assertTrue('test_workflow', workflow.name)

    def test_pause_workflow(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.pause_workflow_scheduling.return_value = WorkflowInfo(
                workflow_name='test_workflow')
            client = SchedulingClient("localhost:{}".format(_PORT))
            workflow = client.pause_workflow_scheduling(
                namespace='namespace', workflow_name='test_workflow')
            self.assertTrue('test_workflow', workflow.name)

    def test_resume_workflow(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.resume_workflow_scheduling.return_value = WorkflowInfo(
                workflow_name='test_workflow')
            client = SchedulingClient("localhost:{}".format(_PORT))
            workflow = client.resume_workflow_scheduling(
                namespace='namespace', workflow_name='test_workflow')
            self.assertTrue('test_workflow', workflow.name)

    def test_get_workflow(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.get_workflow.return_value = WorkflowInfo(
                workflow_name='test_workflow')
            client = SchedulingClient("localhost:{}".format(_PORT))
            workflow = client.get_workflow(namespace='namespace',
                                           workflow_name='test_workflow')
            self.assertTrue('test_workflow', workflow.name)

    def test_list_workflows(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.list_workflows.return_value = [
                WorkflowInfo(workflow_name='test_workflow_1'),
                WorkflowInfo(workflow_name='test_workflow_2')
            ]
            client = SchedulingClient("localhost:{}".format(_PORT))
            workflow_list = client.list_workflows(namespace='namespace')
            self.assertTrue(2, len(workflow_list))

    def test_start_new_workflow_execution(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.start_new_workflow_execution.return_value \
                = WorkflowExecutionInfo(execution_id='id', state=State.INIT)
            client = SchedulingClient("localhost:{}".format(_PORT))
            workflow_execution = client.start_new_workflow_execution(
                namespace='namespace', workflow_name='test_workflow')
            self.assertEqual('id', workflow_execution.execution_id)
            self.assertEqual(StateProto.INIT,
                             workflow_execution.execution_state)

    def test_kill_all_workflow_execution(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.kill_all_workflow_execution.return_value \
                = [WorkflowExecutionInfo(execution_id='id_1', state=State.INIT),
                   WorkflowExecutionInfo(execution_id='id_2', state=State.INIT)]
            client = SchedulingClient("localhost:{}".format(_PORT))
            workflow_execution_list = client.kill_all_workflow_executions(
                namespace='namespace', workflow_name='test_workflow')
            self.assertEqual(2, len(workflow_execution_list))

    def test_kill_workflow_execution(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.kill_workflow_execution.return_value \
                = WorkflowExecutionInfo(execution_id='id', state=State.RUNNING)
            client = SchedulingClient("localhost:{}".format(_PORT))
            workflow_execution = client.kill_workflow_execution(
                execution_id='id')
            self.assertEqual('id', workflow_execution.execution_id)
            self.assertEqual(StateProto.RUNNING,
                             workflow_execution.execution_state)

    def test_get_workflow_execution(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.get_workflow_execution.return_value \
                = WorkflowExecutionInfo(execution_id='id', state=State.INIT)
            client = SchedulingClient("localhost:{}".format(_PORT))
            workflow_execution = client.get_workflow_execution(
                execution_id='id')
            self.assertEqual('id', workflow_execution.execution_id)
            self.assertEqual(StateProto.INIT,
                             workflow_execution.execution_state)

    def test_list_workflow_executions(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.list_workflow_executions.return_value \
                = [WorkflowExecutionInfo(execution_id='id_1', state=State.INIT),
                   WorkflowExecutionInfo(execution_id='id_2', state=State.INIT)]
            client = SchedulingClient("localhost:{}".format(_PORT))
            workflow_execution_list = client.list_workflow_executions(
                namespace='namespace', workflow_name='test_workflow')
            self.assertEqual(2, len(workflow_execution_list))

    def test_start_job(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.start_job.return_value \
                = JobInfo(job_name='job_name',
                          state=State.RUNNING,
                          workflow_execution=WorkflowExecutionInfo(execution_id='id', state=State.INIT))
            client = SchedulingClient("localhost:{}".format(_PORT))
            job = client.start_job(job_name='job_name', execution_id='id')
            self.assertEqual('job_name', job.name)
            self.assertEqual(StateProto.RUNNING, job.job_state)
            self.assertEqual('id', job.workflow_execution.execution_id)
            self.assertEqual(StateProto.INIT,
                             job.workflow_execution.execution_state)

    def test_stop_job(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.stop_job.return_value \
                = JobInfo(job_name='job_name',
                          state=State.RUNNING,
                          workflow_execution=WorkflowExecutionInfo(execution_id='id', state=State.INIT))
            client = SchedulingClient("localhost:{}".format(_PORT))
            job = client.stop_job(job_name='job_name', execution_id='id')
            self.assertEqual('job_name', job.name)
            self.assertEqual(StateProto.RUNNING, job.job_state)
            self.assertEqual('id', job.workflow_execution.execution_id)
            self.assertEqual(StateProto.INIT,
                             job.workflow_execution.execution_state)

    def test_restart_job(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.restart_job.return_value \
                = JobInfo(job_name='job_name',
                          state=State.RUNNING,
                          workflow_execution=WorkflowExecutionInfo(execution_id='id', state=State.INIT))
            client = SchedulingClient("localhost:{}".format(_PORT))
            job = client.restart_job(job_name='job_name', execution_id='id')
            self.assertEqual('job_name', job.name)
            self.assertEqual(StateProto.RUNNING, job.job_state)
            self.assertEqual('id', job.workflow_execution.execution_id)
            self.assertEqual(StateProto.INIT,
                             job.workflow_execution.execution_state)

    def test_get_job(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.get_job.return_value \
                = JobInfo(job_name='job_name',
                          state=State.RUNNING,
                          workflow_execution=WorkflowExecutionInfo(execution_id='id', state=State.INIT))
            client = SchedulingClient("localhost:{}".format(_PORT))
            job = client.get_job(job_name='job_name', execution_id='id')
            self.assertEqual('job_name', job.name)
            self.assertEqual(StateProto.RUNNING, job.job_state)
            self.assertEqual('id', job.workflow_execution.execution_id)
            self.assertEqual(StateProto.INIT,
                             job.workflow_execution.execution_state)

    def test_list_jobs(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.list_jobs.return_value \
                = [JobInfo(job_name='job_name_1',
                           state=State.RUNNING,
                           workflow_execution=WorkflowExecutionInfo(execution_id='id', state=State.INIT)),
                   JobInfo(job_name='job_name_2',
                           state=State.RUNNING,
                           workflow_execution=WorkflowExecutionInfo(execution_id='id', state=State.INIT))]
            client = SchedulingClient("localhost:{}".format(_PORT))
            job_list = client.list_jobs(execution_id='id')
            self.assertEqual(2, len(job_list))