def test_list_workflows(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.list_workflows.return_value = [
                WorkflowInfo(workflow_name='test_workflow_1'),
                WorkflowInfo(workflow_name='test_workflow_2')
            ]
            client = SchedulingClient("localhost:{}".format(_PORT))
            workflow_list = client.list_workflows(namespace='namespace')
            self.assertTrue(2, len(workflow_list))
 def list_jobs(self, execution_id: Text) -> List[JobInfo]:
     with create_session() as session:
         dag_run = session.query(DagRun).filter(
             DagRun.run_id == execution_id).first()
         if dag_run is None:
             return None
         task_list = session.query(TaskInstance).filter(
             TaskInstance.dag_id == dag_run.dag_id,
             TaskInstance.execution_date == dag_run.execution_date).all()
         if task_list is None:
             return []
         else:
             result = []
             project_name, workflow_name = self.dag_id_to_namespace_workflow(
                 dag_run.dag_id)
             for task in task_list:
                 job = JobInfo(
                     job_name=task.task_id,
                     state=self.airflow_state_to_state(task.state),
                     workflow_execution=WorkflowExecutionInfo(
                         workflow_info=WorkflowInfo(
                             namespace=project_name,
                             workflow_name=workflow_name),
                         execution_id=dag_run.run_id,
                         state=self.airflow_state_to_state(dag_run.state)))
                 result.append(job)
             return result
 def restart_job(self, job_name: Text,
                 execution_id: Text) -> Optional[JobInfo]:
     with create_session() as session:
         dag_run = session.query(DagRun).filter(
             DagRun.run_id == execution_id).first()
         if dag_run is None:
             return None
         if dag_run.state != State.RUNNING:
             raise Exception(
                 'execution: {} state: {} can not trigger job.'.format(
                     execution_id, dag_run.state))
         task = dag_run.get_task_instance(job_name, session)
         if task is None:
             return None
         self.airflow_client.schedule_task(
             dag_id=dag_run.dag_id,
             task_id=job_name,
             action=SchedulingAction.RESTART,
             context=ExecutionContext(dagrun_id=dag_run.run_id))
         project_name, workflow_name = self.dag_id_to_namespace_workflow(
             dag_run.dag_id)
         return JobInfo(
             job_name=job_name,
             state=self.airflow_state_to_state(task.state),
             workflow_execution=WorkflowExecutionInfo(
                 workflow_info=WorkflowInfo(namespace=project_name,
                                            workflow_name=workflow_name),
                 execution_id=dag_run.run_id,
                 state=self.airflow_state_to_state(dag_run.state)))
    def delete_workflow(self, project_name: Text,
                        workflow_name: Text) -> Optional[WorkflowInfo]:
        dag_id = self.airflow_dag_id(project_name, workflow_name)
        if not self.dag_exist(dag_id):
            return None
        deploy_path = self.config.properties().get('airflow_deploy_path')
        if deploy_path is None:
            raise Exception("airflow_deploy_path config not set!")
        airflow_file_path = os.path.join(deploy_path, dag_id + '.py')
        if os.path.exists(airflow_file_path):
            os.remove(airflow_file_path)

        # stop all workflow executions
        self.kill_all_workflow_execution(project_name, workflow_name)

        # clean db meta
        with create_session() as session:
            dag = session.query(DagModel).filter(
                DagModel.dag_id == dag_id).first()
            session.query(DagTag).filter(DagTag.dag_id == dag_id).delete()
            session.query(DagModel).filter(DagModel.dag_id == dag_id).delete()
            session.query(DagCode).filter(
                DagCode.fileloc_hash == DagCode.dag_fileloc_hash(
                    dag.fileloc)).delete()
            session.query(SerializedDagModel).filter(
                SerializedDagModel.dag_id == dag_id).delete()
            session.query(DagRun).filter(DagRun.dag_id == dag_id).delete()
            session.query(TaskState).filter(
                TaskState.dag_id == dag_id).delete()
            session.query(TaskInstance).filter(
                TaskInstance.dag_id == dag_id).delete()
            session.query(TaskExecution).filter(
                TaskExecution.dag_id == dag_id).delete()
        return WorkflowInfo(namespace=project_name,
                            workflow_name=workflow_name)
 def submit_workflow(self,
                     workflow: Workflow,
                     project_desc: ProjectDesc,
                     args: Dict = None) -> WorkflowInfo:
     workflow_name = workflow.workflow_name
     dag_id = self.airflow_dag_id(project_desc.project_name,
                                  workflow.workflow_name)
     code_text = self.dag_generator.generator(workflow, dag_id, args)
     workflow.workflow_name = workflow_name
     deploy_path = self.config.properties().get('airflow_deploy_path')
     if deploy_path is None:
         raise Exception("airflow_deploy_path config not set!")
     if not os.path.exists(deploy_path):
         os.makedirs(deploy_path)
     airflow_file_path = os.path.join(deploy_path, dag_id + '.py')
     if os.path.exists(airflow_file_path):
         os.remove(airflow_file_path)
     with NamedTemporaryFile(mode='w+t',
                             prefix=dag_id,
                             suffix='.py',
                             dir='/tmp',
                             delete=False) as f:
         f.write(code_text)
     os.rename(f.name, airflow_file_path)
     self.airflow_client.trigger_parse_dag(airflow_file_path)
     return WorkflowInfo(namespace=project_desc.project_name,
                         workflow_name=workflow.workflow_name)
 def get_workflow(self, project_name: Text,
                  workflow_name: Text) -> Optional[WorkflowInfo]:
     dag_id = self.airflow_dag_id(project_name, workflow_name)
     with create_session() as session:
         dag = session.query(DagModel).filter(
             DagModel.dag_id == dag_id).first()
         if dag is None:
             return None
         else:
             return WorkflowInfo(namespace=project_name,
                                 workflow_name=workflow_name)
    def test_get_workflow(self):
        with mock.patch(
                'ai_flow.test.scheduler.test_scheduling_service.MockScheduler'
        ) as mockScheduler:
            instance = mockScheduler.return_value
            self.server.scheduling_service._scheduler = instance

            instance.get_workflow.return_value = WorkflowInfo(
                workflow_name='test_workflow')
            client = SchedulingClient("localhost:{}".format(_PORT))
            workflow = client.get_workflow(namespace='namespace',
                                           workflow_name='test_workflow')
            self.assertTrue('test_workflow', workflow.name)
 def start_new_workflow_execution(
         self, project_name: Text,
         workflow_name: Text) -> Optional[WorkflowExecutionInfo]:
     dag_id = self.airflow_dag_id(project_name, workflow_name)
     deploy_path = self.config.properties().get('airflow_deploy_path')
     if deploy_path is None:
         raise Exception("airflow_deploy_path config not set!")
     if not self.dag_exist(dag_id):
         return None
     context: ExecutionContext = self.airflow_client.schedule_dag(dag_id)
     return WorkflowExecutionInfo(workflow_info=WorkflowInfo(
         namespace=project_name, workflow_name=workflow_name),
                                  execution_id=context.dagrun_id,
                                  state=job_meta.State.INIT)
 def get_workflow_execution(
         self, execution_id: Text) -> Optional[WorkflowExecutionInfo]:
     with create_session() as session:
         dag_run = session.query(DagRun).filter(
             DagRun.run_id == execution_id).first()
         if dag_run is None:
             return None
         else:
             state = self.airflow_state_to_state(dag_run.state)
             project_name, workflow_name = self.dag_id_to_namespace_workflow(
                 dag_run.dag_id)
             return WorkflowExecutionInfo(workflow_info=WorkflowInfo(
                 namespace=project_name, workflow_name=workflow_name),
                                          execution_id=dag_run.run_id,
                                          state=state)
 def list_workflows(self, project_name: Text) -> List[WorkflowInfo]:
     with create_session() as session:
         dag_list = session.query(DagModel).filter(
             DagModel.dag_id.startswith('{}.'.format(project_name))).all()
         if dag_list is None:
             return []
         else:
             result = []
             for dag in dag_list:
                 ns, workflow_name = self.parse_namespace_workflow_name(
                     dag.dag_id)
                 result.append(
                     WorkflowInfo(namespace=project_name,
                                  workflow_name=workflow_name))
             return result
 def kill_workflow_execution(
         self, execution_id: Text) -> Optional[WorkflowExecutionInfo]:
     with create_session() as session:
         dag_run = session.query(DagRun).filter(
             DagRun.run_id == execution_id).first()
         if dag_run is None:
             return None
         project_name, workflow_name = self.dag_id_to_namespace_workflow(
             dag_run.dag_id)
         context: ExecutionContext = ExecutionContext(execution_id)
         current_context = self.airflow_client.stop_dag_run(
             dag_run.dag_id, context)
         return WorkflowExecutionInfo(
             workflow_info=WorkflowInfo(namespace=project_name,
                                        workflow_name=workflow_name),
             execution_id=current_context.dagrun_id,
             state=job_meta.State.KILLING)
 def list_workflow_executions(
         self, project_name: Text,
         workflow_name: Text) -> List[WorkflowExecutionInfo]:
     dag_id = self.airflow_dag_id(project_name, workflow_name)
     with create_session() as session:
         dagrun_list = session.query(DagRun).filter(
             DagRun.dag_id == dag_id).all()
         if dagrun_list is None:
             return []
         else:
             result = []
             for dagrun in dagrun_list:
                 state = self.airflow_state_to_state(dagrun.state)
                 result.append(
                     WorkflowExecutionInfo(workflow_info=WorkflowInfo(
                         namespace=project_name,
                         workflow_name=workflow_name),
                                           execution_id=dagrun.run_id,
                                           state=state))
             return result
 def get_job(self, job_name: Text, execution_id: Text) -> Optional[JobInfo]:
     with create_session() as session:
         dag_run = session.query(DagRun).filter(
             DagRun.run_id == execution_id).first()
         if dag_run is None:
             return None
         task = session.query(TaskInstance).filter(
             TaskInstance.dag_id == dag_run.dag_id,
             TaskInstance.execution_date == dag_run.execution_date,
             TaskInstance.task_id == job_name).first()
         if task is None:
             return None
         else:
             project_name, workflow_name = self.dag_id_to_namespace_workflow(
                 dag_run.dag_id)
             return JobInfo(job_name=job_name,
                            state=self.airflow_state_to_state(task.state),
                            workflow_execution=WorkflowExecutionInfo(
                                workflow_info=WorkflowInfo(
                                    namespace=project_name,
                                    workflow_name=workflow_name),
                                execution_id=dag_run.run_id,
                                state=self.airflow_state_to_state(
                                    dag_run.state)))
Beispiel #14
0
def proto_to_workflow(proto: WorkflowProto) -> WorkflowInfo:
    if proto is None:
        return None
    else:
        return WorkflowInfo(namespace=proto.namespace,
                            workflow_name=proto.name)
 def resume_workflow_scheduling(self, project_name: Text,
                                workflow_name: Text) -> WorkflowInfo:
     dag_id = self.airflow_dag_id(project_name, workflow_name)
     DagModel.get_dagmodel(dag_id=dag_id).set_is_paused(is_paused=False)
     return WorkflowInfo(namespace=project_name,
                         workflow_name=workflow_name)