from aim import Session sess = Session() sess.set_params({ 'foo': 'bar', }) for i in range(10): sess.track(i, name='val')
outputs = model(images) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() if i % 30 == 0: print('Epoch [{}/{}], Step [{}/{}], ' 'Loss: {:.4f}'.format(epoch + 1, num_epochs, i + 1, total_step, loss.item())) # aim - Track model loss function aim_sess.track(loss.item(), name='loss', epoch=epoch, subset='train') correct = 0 total = 0 _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() acc = 100 * correct / total # aim - Track metrics aim_sess.track(acc, name='accuracy', epoch=epoch, subset='train') # TODO: Do actual validation if i % 300 == 0: aim_sess.track(loss.item(),
from aim import Session sess1 = Session(experiment='line') sess2 = Session(experiment='linex2') sess1.set_params({ 'k': '1', }) sess2.set_params({ 'k': '2', }) for i in range(10): sess1.track(i, name='val') sess2.track(i*2, name='val')