Beispiel #1
0
    def __init__(self):
        """ 你的 APPID AK SK """
        APP_ID = '16947698'
        API_KEY = 'fN9yStlTEv1zkWoMDMQU7YKT'
        SECRET_KEY = 'fqk4FfDRZp7fjk1ngcTeeaKtgWZxFh6H'

        self.gesture_client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)

        self.gesture_contrast = {
            "Ok": "1",
            "Thumb_up": "4",
            "Thumb_down": "5",
            "Insult": "2",
            "Six": "3",
            "Five": "6",
            "Fist": "7",
            "Honour": "8",
        }

        # 0指的是摄像头的编号。如果你电脑上有两个摄像头的话,访问第2个摄像头就可以传入1。
        self.capture = cv2.VideoCapture(0)

        self.music_names = os.listdir('music')  # 列表歌

        self.music_source = []  # 音频播放路劲
        self.current_music_no = 0  # 音乐
        self.volume = 0.2  # 设置播放频道的音量
Beispiel #2
0
def bdcut(path):
    try:
        pic = Image.open(path)
        if pic.mode == "P": pic = pic.convert('RGB') # 有些图片有P通道,base编码后会出问题
        (wf,hf) = pic.size
        BD_VIP='否'
        BD_AI_client = AipBodyAnalysis('替换appid','替换apikey','替换secrekey')
        with open(path, 'rb') as fp:
                x_nose = int(BD_AI_client.bodyAnalysis(fp.read())["person_info"][0]['body_parts']['nose']['x']) # 返回鼻子横坐标
        if BD_VIP == '否':
                time.sleep(0.4) # 免费用户QPS=2
        else:
                time.sleep( 1/int(1.1*BD_VIP) )
        if x_nose + 1/3*hf > wf: # 判断鼻子在图整体的位置
                x_left = wf-2/3*hf # 以右为边
        elif x_nose - 1/3*hf < 0:
                x_left = 0 # 以左为边
        else:
                x_left = x_nose-1/3*hf # 以鼻子为中线向两边扩展
        fixed_pic = pic.crop((x_left,0,x_left+2/3*hf,hf))
        fixed_pic.save(path.replace('fanart','poster'), quality=95)
        print('[+]百度AI裁剪操作成功')
    except:
        imagecut=1
        print('[-] '+ path +' AI 分析失败,跳过 AI 直接裁剪。\n')
Beispiel #3
0
def gesture_recognition():
    gesture_client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)
    frame = telloGetFrame(Drone)
    cv2.imshow('frame', frame)
    cv2.imwrite("{}.png".format(img_count), frame)
    image = get_file_content("{}.png".format(img_count))
    gesture = gesture_client.gesture(image)  #AipBodyAnalysis内部函数
    print(gesture)
Beispiel #4
0
	def __init__(self, configPath, configSection):
		keyInfo = fu.readConfig(configPath, configSection)
		self.appid = keyInfo['appid']
		self.api_key = keyInfo['api_key']
		self.secret_key = keyInfo['secret_key']
		self.client = AipBodyAnalysis(self.appid, self.api_key, self.secret_key)
		self.filename = None
		self.picture = None
		self.picture_size = None
		self.picture_format = None
Beispiel #5
0
 def analyse_people(self, filePath):
     client = AipBodyAnalysis(self.APP_ID, self.API_KEY, self.SECRET_KEY)
     """ 读取图片 """
     with open(filePath, 'rb') as fp:
         data = client.bodyAttr(fp.read())
         data = str(data)
         res = re.findall(r"'(.*?)': {'score': (0.\d+), 'name': '(.*?)'}", data, re.S)
         del res[0]
         for r in res:
             print("{:—<20}特征:{:—<15}精准度:{}".format(r[0],r[2], r[1]))
         """ 如果有可选参数 """
Beispiel #6
0
def body_seg(filename="./pic/test.jpg", savefilename="./pic/fore.jpg"):
    APP_ID = '19037846'
    API_KEY = 'pi8i47A8jGBH1VZDr8ioqgfC'
    SECRET_KEY = 'qwcqweVfjf9pX2fB6MykU15u6XszXko4'
    client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)
    image = get_file(filename)
    options = {}
    options["type"] = "foreground"
    res = client.bodySeg(image, options)
    foreground = base64.b64decode(res["foreground"])
    with open(savefilename, "wb") as f:
        f.write(foreground)
Beispiel #7
0
def pose_codelab(content, pose):
    #百度API通行证(获取方法见https://ai.baidu.com)
    APP_ID = '21219492'
    API_KEY = 'jC6Z4Fa9jTs6wtpUTkoyGVMV'
    SECRET_KEY = 'pbGBVFu41ZZRWHhtPEqUbGTaEekaKfqc'
    client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)  #输入ID和密钥建立连接
    video_capture = cv2.VideoCapture(0)
    while True:

        ret, frame = video_capture.read()  #读取摄像头数据

        #处理图片格式并发送给云端API
        frame_b = cv2.imencode(".jpg", frame)[1].tobytes()
        gesture_info = client.gesture(frame_b)

        #处理识别结果(API会将识别到的人脸和手势全部返回)
        if gesture_info['result']:
            result = gesture_info['result']
            num = gesture_info['result_num']
            for i in range(num):

                classname = result[i]['classname']  #识别的手势/人脸类别

                #识别框坐标
                left = result[i]['left']
                top = result[i]['top']
                width = result[i]['width']
                height = result[i]['height']

                #绘制识别框
                cv2.rectangle(frame, (left, top), (left + width, top + height),
                              (0, 0, 255), 2)
                if (classname == 'Face'):
                    cv2.putText(frame, 'Face', (left, top + 10),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
                else:
                    cv2.putText(frame, '{}'.format(classname),
                                (left, top + 10), cv2.FONT_HERSHEY_SIMPLEX,
                                0.5, (255, 255, 0), 1)
                    pose.send_message_to_scratch(classname)  #发送识别结果到scratch

        cv2.imshow('Video', frame)

        time.sleep(0.15)  #防止QPS溢出

        # Hit 'q' on the keyboard to quit!
        if cv2.waitKey(100) & 0xFF == ord('q'):
            break
        # time.sleep(5)
    #
    # Release handle to the webcam
    video_capture.release()
    cv2.destroyAllWindows()
Beispiel #8
0
    def detection(self):
        clients = AipBodyAnalysis(self.APP_ID, self.API_KEY, self.SECRET_KEY)

        image = self.get_file_content('test.jpg')
        options = {}
        # """ 带参数调用人体检测与属性识别 """
        res = clients.bodyAttr(image, options)
        data = res['person_info'][0]['attributes']
        news = {}
        for k, v in data.items():
            news[k] = v['name']
        pprint(news)
Beispiel #9
0
def fanHuiTuPianGuanDianX_Y(url):  #从百度AI获取到图片关键点返回值,参数为图片路径
    """ 你的 APPID AK SK """
    APP_ID = '22952436'
    API_KEY = 'a5UrzVfjQHyuK0GSCXk8QoQH'
    SECRET_KEY = '8wguEEmbNTnMfAOOOigMr1cM1SZXvq1c'
    client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)

    def get_file_content(filePath):
        with open(filePath, 'rb') as fp:
            return fp.read()

    image = get_file_content(url)
    return client.bodyAnalysis(image)
Beispiel #10
0
def bodypart(filename):

    #    APP_ID = 'd90755ad2f2047dbabb12ad0adaa0b03'
    #    API_KEY = 'b7b0f4d01f7f4aef9b5453f6558c23b1'
    #    SECRET_KEY = '6ad666162ef24213b5bde7bdd904fcbe'

    client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)

    # """ 读取图片 """
    image = get_file_content(filename)

    # """ 调用人体关键点识别 """
    para = client.bodyAnalysis(image)
    # print(para)
    # time.sleep(2)
    return para
Beispiel #11
0
def index(fileName):
    APP_ID = ''
    API_KEY = ''
    SECRET_KEY = ''
    client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)
    image = get_file_content(fileName)
    """ 调用手势识别 """
    res = client.gesture(image)
    if 'error_code' in res:
        print(res['error_msg'])
    try:
        classname = res['result'][0]['classname']
        print(classname)
        return classname
    except Exception as err:
        print('手势识别失败')
 def __init__(self):
     self.app_id = rospy.get_param("~app_id")
     self.api_key = rospy.get_param("~api_key")
     self.secret_key = rospy.get_param("~secret_key")
     self.client = AipBodyAnalysis(self.app_id, self.api_key,
                                   self.secret_key)
     self.bridge = CvBridge()
    def __init__(self):
        APP_ID = '18721308'
        API_KEY = 'lNQGdBNazTPv8LpSP4x0GQlI'
        SECRET_KEY = 'nW8grONY777n4I2KvpOVuKGDNiY03omI'
        self.client_face = AipFace(APP_ID, API_KEY, SECRET_KEY)
        self.client_body = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)
        self.image_type = "BASE64"
        filepath = "/Pictures/image.jpg"

        msg = reception_image()
        self.guest = Guest()
        # self.name = None
        # self.age = None
        # self.image = None
        # self.gender = None
        # self.drink = None

        self.options_body = {}
        self.options_body["type"] = "gender,upper_color,upper_wear_fg"
        self.options_face = {}
        self.options_face["face_field"] = "age,gender"
        self.options_face["max_face_num"] = 3
        self.options_face["face_type"] = "LIVE"
      

        #发布器
        self.roi_pub = rospy.Publisher('/image/roi',RegionOfInterest,queue_size=1)
        self.objpos_pub = rospy.Publisher('/image/object_position2d',String,queue_size=1)
        self.control_pub = rospy.Pubscriber("/control", reception, queue_size=1)
        self.speech_pub = rospy.Pubscriber('/speech/check_door',reception_image,self.find_people)
        #订阅器
        self.control_sub = rospy.Subscriber("/control", reception, self.controlCallback)
       
        self.ROI = RegionOfInterest()
class BaiduAIP(object):
    def __init__(self):
        self.client = AipBodyAnalysis(cfg.APP_ID, cfg.API_KEY, cfg.SECRET_KEY)

    def bodyAnalysis(self, img_jpg):
        etval, buffer = cv2.imencode('.jpg', img_jpg)
        result = self.client.bodyAnalysis(buffer)  # 内部把buffer转换为base64了
        return result
Beispiel #15
0
def AutoCutout(path):
    APP_ID = '19815134'
    API_KEY = 'i7yBb3Fx3e4ZMILo8nHsrZQT'
    SECRET_KEY = 'wuEXaPYbz1RXlAdDYYRj49tlPoNZdqfW'

    client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)
    imgfile = path
    ori_img = cv2.imread(imgfile)
    height, width, _ = ori_img.shape
    with open(imgfile, 'rb') as fp:
        img_info = fp.read()
    seg_res = client.bodySeg(img_info)
    labelmap = base64.b64decode(seg_res['labelmap'])
    nparr = np.fromstring(labelmap, np.uint8)
    labelimg = cv2.imdecode(nparr, 1)
    labelimg = cv2.resize(labelimg, (width, height), interpolation=cv2.INTER_NEAREST)
    new_img = np.where(labelimg == 1, 255, labelimg)
    result = cv2.bitwise_and(ori_img, new_img)
    cv2.imwrite(path, result)
def Seg_img(jpg_path, crop_path, save_path):
    '''
    调用API 分割人像图片
    :param jpg_path: 原图像
    :param crop_path: 裁剪之后图像
    :param save_path: 生成 mask 存放路径
    :return:
    '''

    # 通过百度控制台申请得到的 AK 和 SK;
    APP_ID = "23633750"
    API_KEY = 'uqnHjMZfChbDHvPqWgjeZHCR'
    SECRET_KEY = 'KIKTgD5Dh0EGyqn74Zqq8wHWB39uKaS3'

    client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)
    # 文件夹
    jpg_file = os.listdir(jpg_path)
    # 要保存的文件夹
    for i in jpg_file:
        open_file = os.path.join(jpg_path, i)
        save_file = os.path.join(save_path, i)
        if not os.path.exists(save_file):  #文件不存在时,进行下步操作
            img = cv2.imread(open_file)  # 获取图像尺寸
            height, width, _ = img.shape
            if crop_path:  # 若Crop_path 不为 None,则不进行裁剪
                crop_file = os.path.join(crop_path, i)
                img = img[100:-1, 300:-400]  #图片太大,对图像进行裁剪
                cv2.imwrite(crop_file, img)
                image = get_file_content(crop_file)
            else:

                image = get_file_content(open_file)

            res = client.bodySeg(image)  #调用百度API 对人像进行分割
            labelmap = base64.b64decode(res['labelmap'])
            labelimg = np.frombuffer(labelmap, np.uint8)  # 转化为np数组 0-255
            labelimg = cv2.imdecode(labelimg, 1)
            labelimg = cv2.resize(labelimg, (width, height),
                                  interpolation=cv2.INTER_NEAREST)
            img_new = np.where(labelimg == 1, 255, labelimg)  # 将 1 转化为 255
            cv2.imwrite(save_file, img_new)
            print(save_file, 'save successfully')
Beispiel #17
0
 def parseimage(self, image):
     filename = 'images/gesture.png'
     cv2.imwrite(filename, image)
     myimage = self.get_file_content(filename)
     client = AipBodyAnalysis(self.APP_ID, self.API_KEY, self.SECRET_KEY)
     result = client.gesture(myimage)
     print(result)
     if result["result_num"] > 0:
         data = result['result']
         print(data[0]["classname"])
         if data[0]['classname'] == ('Heart_single' or 'Heart_1'
                                     or 'Heart_2' or 'Heart_3'):
             self.robotpi_movement.move_left()
         if data[0]['classname'] == 'Fist':
             self.robotpi_movement.wave_hands()
         if data[0]['classname'] == 'Rock':
             self.robotpi_movement.play_sound(2, 16)
     else:
         print("暂无结果")
         self.robotpi_movement.play_sound(2, 4)
    def __init__(self):
        self.time = time.time()
        APP_ID = '18889374'
        API_KEY = 'pUNweNaSK4rWz57vGs9KpuW1'
        SECRET_KEY = 'ru5LqWM0lrcVYBh9cjd32fy951nagqcA'
        self.image_type = "BASE64"
        self.client_face = AipFace(APP_ID, API_KEY, SECRET_KEY)
        self.client_body = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)
        self.client_body.setConnectionTimeoutInMillis(2000)
        self.client_body.setSocketTimeoutInMillis(2000)
        self.client_face.setConnectionTimeoutInMillis(2000)
        self.client_face.setSocketTimeoutInMillis(2000)
        self.bridge = CvBridge()
        self.ispub = False
        ##############人类数据
        self.filepath = "/home/qian/catkin_ws/src/fare_src/kamerider_image/kamerider_image_api/imgfile/"
        ##############跟踪数据
        self.roi = None
        self.depth_array = None
        self.target_pos = Pose()

        ##############话题名称
        # 接收器与发布器
        self.check_gender = rospy.get_param('~check_gender', 'False')

        if (type(self.check_gender) == type('text')):
            self.check_gender = False

        ##############发布器
        self.img_pub = rospy.Publisher("/image/test", Image, queue_size=1)
        self.roi_pub = rospy.Publisher("roi", RegionOfInterest, queue_size=1)
        self.img_sub = rospy.Subscriber("/usb_cam/image_raw",
                                        Image,
                                        self.imgCallback,
                                        queue_size=1)
        self.word_pub = rospy.Publisher("/xfwords", String, queue_size=1)
        self.face_pub = rospy.Publisher("/start_recognize_faces",
                                        String,
                                        queue_size=1)

        print("============================================================")
Beispiel #19
0
    def __init__(self):
        self.qe = queue
        self.q = self.qe.Queue(maxsize=5)
        """ 你的人流量统计 APPID AK SK """
        self.APP_ID = '16193424'
        self.API_KEY = 'eqZCDofIR6FXWaMHr5bszls6'
        self.SECRET_KEY = 'CIlH54Ro1HvpZwQR4nQbetQEcnPqWbUQ'

        self.aipBodyAnalysis = AipBodyAnalysis(self.APP_ID, self.API_KEY,
                                               self.SECRET_KEY)
        # self.aipFace = AipFace(Aself.PP_ID, self.API_KEY, self.SECRET_KEY)
        self.cap = cv2.VideoCapture("http://49.90.255.4:10001/8.ts")
Beispiel #20
0
class tylt_AipBodyAnalysis:
    def __init__(self):
        self.APP_ID = '14372361'
        self.API_KEY = 'rwIh36pOcyqV8S9rQ6BBQlxh'
        self.SERECT_KEY = 'NiHoVNuAwK1RoBRypCKo6OPQrdopWU2Y'
        self.client = AipBodyAnalysis(self.APP_ID, self.API_KEY,
                                      self.SERECT_KEY)

    def body_attr(self, image):
        return self.client.bodyAttr(image)

    @staticmethod
    def dealwith_body_attr_result(person_info_list):
        """
        处理人体属性信息并返回
        :param person_info_list: 人体属性信息列表
        :return:
        """
        response_list = []
        for person in person_info_list:
            attributes = person['attributes']
            location = {
                'left': person['location']['left'],
                'top': person['location']['top'],
                'width': person['location']['width'],
                'height': person['location']['height'],
            }
            person_info_dict = {
                'upper_wear_fg': attributes['upper_wear_fg']['name'],
                'cellphone': attributes['cellphone']['name'],
                'lower_cut': attributes['lower_cut']['name'],
                'umbrella': attributes['umbrella']['name'],
                'orientation': attributes['orientation']['name'],
                'headwear': attributes['headwear']['name'],
                'gender': attributes['gender']['name'],
                'age': attributes['age']['name'],
                'upper_cut': attributes['upper_cut']['name'],
                'glasses': attributes['glasses']['name'],
                'lower_color': attributes['lower_color']['name'],
                'bag': attributes['bag']['name'],
                'upper_wear_texture': attributes['upper_wear_texture']['name'],
                'smoke': attributes['smoke']['name'],
                'vehicle': attributes['vehicle']['name'],
                'lower_wear': attributes['lower_wear']['name'],
                'carrying_item': attributes['carrying_item']['name'],
                'upper_wear': attributes['upper_wear']['name'],
                'upper_color': attributes['upper_color']['name'],
                'occlusion': attributes['occlusion']['name'],
                'location': location,
            }
            response_list.append(person_info_dict)

        return response_list
Beispiel #21
0
def face_center(filename, model):
    app_id = config.getInstance().conf.get("face", "appid")
    api_key = config.getInstance().conf.get("face", "key")
    app_secret = config.getInstance().conf.get("face", "secret")
    client = AipBodyAnalysis(app_id, api_key, app_secret)
    with open(filename, 'rb') as fp:
        img = fp.read()
    result = client.bodyAnalysis(img)
    if 'error_code' in result:
        raise ValueError(result['error_msg'])
    print('[+]Found person      ' + str(result['person_num']))
    # 中心点取鼻子x坐标
    maxRight = 0
    maxTop = 0
    for person_info in result["person_info"]:
        x = int(person_info['body_parts']['nose']['x'])
        top = int(person_info['location']['top'])
        if x > maxRight:
            maxRight = x
            maxTop = top
    return maxRight, maxTop
Beispiel #22
0
def init_body_detection():
    # baidu clond AI detection project https://console.bce.baidu.com
    app_id = "18480308"
    api_key = "r1ddkBzIGucxEwCkRArbrZGn"
    secret_key = "7ZCAHQaVWvuKP2MCKRxbdgiL3eMbGbhy"

    client = AipBodyAnalysis(app_id, api_key, secret_key)
    client.setConnectionTimeoutInMillis(4000)
    client.setSocketTimeoutInMillis(7000)
    options = {"type": "gender,age"}

    def detective(image):
        try:
            r = client.bodyAttr(image, options)
            if r["person_num"] == 0:
                Log.logger.info("image contain no person")
                return [], "no_body"
            for person in r['person_info']:
                if person['attributes']['gender']['name'] == "男性":
                    Log.logger.info("male has been detected, discard")
                    return [], "male"
                if person['attributes']['gender']['score'] < 0.6:
                    Log.logger.info("not that much like a girl discard")
                    return [], "neutral"
                if person['attributes']['age']['name'] == "幼儿":
                    Log.logger.info("children has been detected, discard")
                    return [], "children"
        except Exception as e:
            Log.logger.warning("image can't be processed {}".format(e))
            return [], "error"
        return [r], "girl"

    return detective
Beispiel #23
0
    def __init__(self):
        APP_ID = '18721308'
        API_KEY = 'lNQGdBNazTPv8LpSP4x0GQlI'
        SECRET_KEY = 'nW8grONY777n4I2KvpOVuKGDNiY03omI'
        self.client_face = AipFace(APP_ID, API_KEY, SECRET_KEY)
        self.client_body = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)
        self.image_type = "BASE64"
        msg = reception_image()
        self.guest = Guest()
        # self.name = None
        # self.age = None
        # self.image = None
        # self.gender = None
        # self.drink = None

        self.options_body = {}
        self.options_body["type"] = "gender,upper_color,upper_wear_fg"
        self.options_face = {}
        self.options_face["face_field"] = "age,gender"
        self.options_face["max_face_num"] = 3
        self.options_face["face_type"] = "LIVE"

        #ros params
        self.sub_image_raw_topic_name = None
        self.sub_destination_topic_name = None
        self.pub_gender_recognition_topic_name = None
        self.pub_object_position2d = None
        # self.depth_img                          = np.array((480,640))
        self.get_params()

        #发布器
        self.objpos_pub = rospy.Publisher('/image/object_position2d',
                                          String,
                                          queue_size=1)

        #订阅器
        self.control_sub = rospy.Subscriber("/control", reception,
                                            self.controlCallback)
        self.speech_sub = rospy.Subscriber('/speech/check_door', String,
                                           self.find_people)
    def gestureRecog(self):
        APP_ID = '16534881'
        API_KEY = 'DSG6hUBgBVt61Ms1XXnYuEPm'
        SECRET_KEY = 'W4nkl6xYmOnRjntg53fDMuxQXvqemNI0'
        a = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)

        cap=cv2.VideoCapture(0)
        while 1:
            ret,image=cap.read()
            cv2.imshow("capture", image)
            if cv2.waitKey(100)&0xff==ord("q"):
                cv2.imwrite("test.jpg", image)
                break

        cap.release()
        cv2.destroyAllWindows()

        filePath = "test.jpg"



        options = {}

        options["top_num"] = 5 

        result=a.gesture(self.get_file_content(filePath),options)

        print(result)

        k=result["result"][0]["classname"]
        
        if k=="Insult": 
                self.port_reset()
        if  k=="ILY":
                self.Slider_3.setValue(500)
                time.sleep(0.5)
                self.Slider_3.setValue(1500)
        else:
            return
Beispiel #25
0
    def __init__(self):
        self.time = time.time()
        APP_ID = '18889374'
        API_KEY = 'pUNweNaSK4rWz57vGs9KpuW1'
        SECRET_KEY = 'ru5LqWM0lrcVYBh9cjd32fy951nagqcA'
        self.imageType = "BASE64"
        self.client_face = AipFace(APP_ID, API_KEY, SECRET_KEY)
        self.client_body = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)
        self.bridge = CvBridge()
        ##############人类数据
        self.filepath = "/home/dell/img/"
        self.option_face = {}
        self.option_body = {}
        self.option_face["face_field"] = "age,gender,glasses,race"
        self.option_face["max_face_num"] = 1
        self.option_body["type"] = "upper_wear,upper_color"

        ##############跟踪数据
        self.roi = None

        ##############话题名称
        # 接收器与发布器
        self.sub_image_name = rospy.get_param('~image_raw_topic_name',
                                              '/usb_cam/image_raw')
        # 发布器
        self.pub_pos_name = rospy.get_param('~object_view_topic_name', 'roi')
        self.pub_img_name = rospy.get_param('~image_test_topic_name',
                                            '/image/test')
        self.pub_fet_name = rospy.get_param('~feature_topic_name',
                                            '/image/feature')
        ##############发布器
        self.img_pub = rospy.Publisher(self.pub_img_name, Image)
        self.roi_pub = rospy.Publisher(self.pub_pos_name, RegionOfInterest)
        self.fet_pub = rospy.Publisher(self.pub_fet_name, Description)

        self.img_sub = rospy.Subscriber(self.sub_image_name, Image,
                                        self.imgCallback)
        print("============================================================")
Beispiel #26
0
class BaiDuAPI(object):
    #特殊 构造函数 初始化函数
    def __init__(self, filePath):
        target = configparser.ConfigParser()
        target.read(filePath, encoding='utf-8-sig')

        self.client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)

    """ 读取图片 """

    def get_file_content(self, photoPath):
        with open(photoPath, 'rb') as fp:
            return fp.read()

    """ 主函数 """

    def file_main(self, photoPath):

        #转码
        #base64_data = base64.b64encode(photoPath)

        # add by me
        f = open(photoPath, 'rb')
        img = base64.b64encode(f.read())

        #img = self.get_file_content('{}'.format(photoPath))
        """ 调用人体关键点识别 """
        #此处只能对一个人进行关键点识别
        #也就是说一个图片如果有好多人的话,只能标出一个人的关节特征
        #此处可以做修改,即进行把一张图所有人的关节特征都表达出来
        #------

        print(self.client.bodyAnalysis(img))

        result = self.client.bodyAnalysis(img)['person_info'][0]['body_parts']
        jo = joint.Joint(result)
        jo.xunhun(photoPath)
        print(result)
Beispiel #27
0
def cut_picture(src):

    # 在百度云中申请,每天各接口有 500 次调用限制.
    APP_ID = '16628525'
    API_KEY = '5ioBzjijPln33f7mPzyProbc'
    SECRET_KEY = 'FR4URtsr2Q77r6RvNyld4swls1Eik5Pu'

    client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)

    # 读取待分割人像图片
    imgfile = src
    ori_img = cv2.imread(imgfile)
    height, width, _ = ori_img.shape

    with open(imgfile, 'rb') as fp:
        img_info = fp.read()
        # print("img_info:", img_info)

    seg_res = client.bodySeg(img_info)
    labelmap = base64.b64decode(seg_res['labelmap'])
    nparr = np.fromstring(labelmap, np.uint8)
    labelimg = cv2.imdecode(nparr, 1)
    labelimg = cv2.resize(labelimg, (width, height),
                          interpolation=cv2.INTER_NEAREST)
    new_img = np.where(labelimg == 1, 255, labelimg)
    # maskfile = imgfile.replace('.jpg', '_mask.png')
    maskfile_dir = './static/image/cut/' + \
        imgfile.split('/')[-1].split('.')[0]+'_mask.png'
    cv2.imwrite(maskfile_dir, new_img)

    # res_imgfile = imgfile.replace('.jpg', '_res.jpg')
    result = cv2.bitwise_and(ori_img, new_img)
    # 保存最终分割出的人像图片到原始图片所在目录

    result_path = './static/image/cut/' + \
        imgfile.split('/')[-1].split('.')[0]+'_res.jpg'
    cv2.imwrite(result_path, result)
Beispiel #28
0
def bodyseg(filename):

    #    APP_ID = 'd90755ad2f2047dbabb12ad0adaa0b03'
    #    API_KEY = 'b7b0f4d01f7f4aef9b5453f6558c23b1'
    #    SECRET_KEY = '6ad666162ef24213b5bde7bdd904fcbe'

    client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)

    # """ 读取图片 """
    image = get_file_content(filename)

    res = client.bodySeg(image)
    print(res)
    labelmap = base64.b64decode(res['labelmap'])
    # time.sleep(2)
    nparr_labelmap = np.fromstring(labelmap, np.uint8)
    labelmapimg = cv2.imdecode(nparr_labelmap, 1)
    print(labelmapimg.shape)
    im_new_labelmapimg = np.where(labelmapimg == 1, 255, labelmapimg)
    # print(im_new_labelmapimg.shape)
    # img=cv2.cvtColor(im_new_labelmapimg, cv2.COLOR_BGR2GRAY)
    # return img.astype('uint8')
    # cv2.imwrite('outline.png',im_new_labelmapimg)
    return im_new_labelmapimg
Beispiel #29
0
    def picscoket(self,a,q):
        APP_ID = ·····
        API_KEY = ····
        SECRET_KEY = ·····
        client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)

        while True:
            if q.qsize() >= 1:

                pic = q.get()
                image = self.get_file_content(pic)
                client.bodyNum(image)
                options = {}
                options["area"] = "0,0,100,100,200,200"
                options["show"] = "false"
                client.bodyNum(image, options)
                num = client.bodyNum(image, options)
                testnum = json.dumps(num)
                testnum2 = json.loads(testnum)
                testnum3 = testnum2['person_num']

                db = pymysql.connect('localhost', 'root', 'root', 'camera')
                cursor = db.cursor()
                ye = now = datetime.datetime.now()
                ye = ye.strftime('%y')
                mo = now = datetime.datetime.now()
                mo = mo.strftime('%m')
                da = now = datetime.datetime.now()
                da = da.strftime('%d')
                sql = "INSERT INTO num(year ,person_num,month,day) VALUES ( '%s', '%s','%s','%s')" % (ye,  testnum3, mo, da)
                try:
                    # 执行sql语句
                    cursor.execute(sql)
                    # 提交到数据库执行
                    db.commit()
                except:
                    # 如果发生错误则回滚
                    db.rollback()

                # 关闭数据库连接
                db.close()
                print(testnum3)


            else:
                print('为空')
                time.sleep(5)
Beispiel #30
0
from aip import AipBodyAnalysis
import json
import cv2 as cv

APP_ID ='11589803'
API_KEY ='K2WOMV1pCyI1IXIbvawDDRhu'
SECRET_KEY = 'VxQRvsETnYHsEZsWi9lGrLhhV5Q1slaX'
client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)

#读取照片
def get_file_content(filePath):
    with open(filePath, 'rb') as fp:
        return fp.read()
#绘制方块
def print_div(a,j):
    img=cv.imread(a)
    for i in range(j['person_num']):
        cv.rectangle(img,(int(j['person_info'][i]['location']['left']),int(j['person_info'][i]['location']['top'])),
                 (int(j['person_info'][i]['location']['left']+j['person_info'][i]['location']['width']),int(j['person_info'][i]['location']['top']+j['person_info'][i]['location']['height'])),
                 (0,255,0),3)
    cv.namedWindow("Image",cv.WINDOW_NORMAL)
    cv.imshow("Image",img)
    cv.waitKey(0)
    cv.destroyAllWindows()
#选择功能
def select_power():
    i=input('''

                     选择需要的功能

                    1.人体关键点识别