Beispiel #1
0
    def predict_velocities(self, img, p_o_b):
        img = (img / 255.0) * 2 - 1.0
        if self.regressor_type == 'full':
            predictions = self.bc_model(img)
        elif self.regressor_type == 'latent':
            z, _, _ = self.cmvae_model.encode(img)
            predictions = self.bc_model(z)
        elif self.regressor_type == 'reg':
            z = self.reg_model(img)
            predictions = self.bc_model(z)
        predictions = predictions.numpy()
        predictions = racing_utils.dataset_utils.de_normalize_v(predictions)
        # print('Predicted body vel: \n {}'.format(predictions[0]))
        v_xyz_world = racing_utils.geom_utils.convert_t_body_2_world(
            airsimdroneracingvae.Vector3r(predictions[0, 0], predictions[0, 1], predictions[0, 2]),
            p_o_b.orientation
        )

        return np.array(
            [
                v_xyz_world.x_val,
                v_xyz_world.y_val,
                v_xyz_world.z_val,
                predictions[0, 3]
            ]
        )
def process_image(client, img_res):
    '''
    # this is the old image get method after decoupled

    img_request = [airsimdroneracingvae.ImageRequest('0', airsimdroneracingvae.ImageType.Scene, False, False)]
    image_array = client.simGetImages(img_request)
    image_response = image_array[0]
    '''

    # img_request = [airsimdroneracingvae.ImageRequest('0', airsimdroneracingvae.ImageType.Scene, False, False)]
    image_array = client.telloGetImages()
    # image_response = image_array[0]

    # img_1d = np.fromstring(image_response.image_data_uint8, dtype=np.uint8)  # get numpy array
    # img_bgr = img_1d.reshape(image_response.height, image_response.width, 3)  # reshape array to 4 channel image array H X W X 3
    img_resized = cv2.resize(image_array,
                             (img_res, img_res)).astype(np.float32)
    img_batch_1 = np.array([img_resized])

    # cam_pos = airsimdroneracingvae.Vector3r(5.5, -4, -1.5+offset[2])
    # cam_orientation = airsimdroneracingvae.Quaternionr(0.4, 0.9, 0, 0)

    cam_pos = airsimdroneracingvae.Vector3r()
    #image_response.camera_position
    cam_orientation = airsimdroneracingvae.Quaternionr()
    # image_response.camera_orientation

    return img_batch_1, cam_pos, cam_orientation
Beispiel #3
0
 def takeoff_with_moveOnSpline(self, takeoff_height, vel_max, acc_max):
     self.client.moveOnSplineAsync(
         path=[airsimdroneracingvae.Vector3r(4, -2, takeoff_height)],
         vel_max=vel_max,
         acc_max=acc_max,
         add_curr_odom_position_constraint=True,
         add_curr_odom_velocity_constraint=True,
         viz_traj=viz_traj,
         vehicle_name=self.drone_name).join()
    offset = [0, 0, -0]
    gate_poses = racing_utils.trajectory_utils.RedGateSpawnerCircle(client, num_gates=8, radius=8, radius_noise=gate_noise, height_range=[0, -gate_noise], track_offset=offset)

    # wait till takeoff complete
    vel_max = 5.0
    acc_max = 2.0

    time.sleep(1.0)

    # takeoff_position = airsimdroneracingvae.Vector3r(25, 7, -1.5)
    # takeoff_orientation = airsimdroneracingvae.Vector3r(.2, -0.9, 0)
    #
    # takeoff_position = airsimdroneracingvae.Vector3r(25, -7, -1.5)
    # takeoff_orientation = airsimdroneracingvae.Vector3r(-.2, 0.9, 0)

    takeoff_position = airsimdroneracingvae.Vector3r(5.5, -4, -1.5+offset[2])
    takeoff_orientation = airsimdroneracingvae.Vector3r(0.4, 0.9, 0)

    # takeoff_position = airsimdroneracingvae.Vector3r(0, 0, -2)
    # takeoff_position = airsimdroneracingvae.Vector3r(0, 0, 10)
    # takeoff_orientation = airsimdroneracingvae.Vector3r(1, 0, 0)
    # client.plot_tf([takeoff_pose], duration=20.0, vehicle_name=drone_name)
    # client.moveOnSplineAsync([airsimdroneracingvae.Vector3r(0, 0, -3)], vel_max=15.0, acc_max=5.0, vehicle_name=drone_name, viz_traj=True).join()
    client.moveOnSplineVelConstraintsAsync([takeoff_position], [takeoff_orientation], vel_max=vel_max, acc_max=acc_max, vehicle_name=drone_name, viz_traj=False).join()
    # client.moveOnSplineVelConstraintsAsync([airsimdroneracingvae.Vector3r(1, 0, 8)], [airsimdroneracingvae.Vector3r(1, 0, 0)], vel_max=vel_max, acc_max=acc_max, vehicle_name=drone_name, viz_traj=True)

    time.sleep(1.0)
    img_res = 64

    if policy_type == 'bc_con':
        training_mode = 'latent'