Beispiel #1
0
def bandpass_denoising(a, name, save_flag=False):
    b_time = time.time()
    grid = GV.grid_displacement_to_center(a.shape, GV.fft_mid_co(a.shape))
    rad = GV.grid_distance_to_center(grid)
    rad = np.round(rad).astype(np.int)

    # create a mask that only center frequencies components will be left
    curve = np.zeros(rad.shape)
    # TODO: change the curve value as desired
    curve[int(rad.shape[0] / 8) * 3:int(rad.shape[0] / 8) * 5,
          int(rad.shape[1] / 8) * 3:int(rad.shape[1] / 8) * 5,
          int(rad.shape[2] / 8) * 3:int(rad.shape[2] / 8) * 5] = 1

    #perform FFT and filter the data with the mask and then transform the filtered data back
    vf = ifftn(ifftshift((fftshift(fftn(a)) * curve)))
    vf = np.real(vf)

    end_time = time.time()
    print('Bandpass de-noise takes', end_time - b_time, 's')

    if save_flag:
        img = (vf[:, :, int(vf.shape[2] / 2)]).copy()
        # TODO: Change the image and tomogram saving path
        img_path = '/Users/apple/Desktop/Lab/Zach_Project/Denoising_Result/Bandpass/' + str(
            name) + '_BP.png'
        plt.imsave(img_path, img, cmap='gray')

        mrc_path = '/Users/apple/Desktop/Lab/Zach_Project/Denoising_Result/Bandpass/' + str(
            name) + '_BP.mrc'
        io_file.put_mrc_data(vf, mrc_path)

        return img
Beispiel #2
0
def sphere_mask(shape, center=None, radius=None, smooth_sigma=None):

    shape = N.array(shape)

    v = N.zeros(shape)

    if center is None:
        center = (
            shape - 1
        ) / 2.0  # IMPORTANT: following python convension, in index starts from 0 to size-1 !!! So (siz-1)/2 is real symmetry center of the volume

    center = N.array(center)

    if radius is None: radius = N.min(shape / 2.0)

    grid = gv.grid_displacement_to_center(shape, mid_co=center)
    dist = gv.grid_distance_to_center(grid)

    v[dist <= radius] = 1.0

    if smooth_sigma is not None:

        assert smooth_sigma > 0
        v_s = N.exp(-((dist - radius) / smooth_sigma)**2)
        v_s[v_s < N.exp(
            -3
        )] = 0.0  # use a cutoff of -3 looks nicer, although the tom toolbox uses -2
        v[dist >= radius] = v_s[dist >= radius]

    return v
Beispiel #3
0
def filter_given_curve(v, curve):
    grid = GV.grid_displacement_to_center(v.shape, GV.fft_mid_co(v.shape))
    rad = GV.grid_distance_to_center(grid)
    rad = N.round(rad).astype(N.int)
    b = N.zeros(rad.shape)
    for (i, a) in enumerate(curve):
        b[(rad == i)] = a
    vf = ifftn(ifftshift((fftshift(fftn(v)) * b)))
    vf = N.real(vf)
    return vf
Beispiel #4
0
def ssnr__get_rad(siz):
    grid = GV.grid_displacement_to_center(siz, GV.fft_mid_co(siz))
    rad = GV.grid_distance_to_center(grid)
    return rad