Beispiel #1
0
    def __init__(self,
                 root,
                 input_transform=None,
                 target_transform=None,
                 _train=False):
        self.images_root = os.path.join(root, 'Images')
        self.labels_root = os.path.join(root, 'Labels')
        self._train = _train

        self.filenames = [
            image_basename(f) for f in os.listdir(self.labels_root)
            if is_image(f)
        ]

        random.shuffle(self.filenames)

        self.input_transform = input_transform
        self.target_transform = target_transform
        self.A_transform = A.Compose([
            A.Rotate(limit=40, p=0.9),
            A.HorizontalFlip(p=0.5),
            A.RGBShift(r_shift_limit=25,
                       g_shift_limit=25,
                       b_shift_limit=25,
                       p=0.9),
            A.OneOf([A.Blur(blur_limit=2, p=0.5),
                     A.ColorJitter(p=0.5)], p=1.0)
        ])
Beispiel #2
0
def common_aug(mode, params):
    '''
    :param mode: 'train', 'test', 'inference'
    :param params:
    '''
    #aug_params = params.get('augm_params', dict())
    augs_list = []
    assert mode  in {'train', 'debug', 'inference'}
    if mode == 'train':
        augs_list.append(albumentations.PadIfNeeded(min_height=params.data.net_hw[0], min_width=params.data.net_hw[1],
                                                    border_mode=cv2.BORDER_REPLICATE,
                                                    always_apply=True))
        augs_list.append(albumentations.RandomCrop(height=params.data.net_hw[0], width=params.data.net_hw[1], always_apply=True))
        if params.augmentation.rotate_limit:
            augs_list.append(T.Rotate(limit=params.augmentation.rotate_limit, border_mode=cv2.BORDER_CONSTANT, always_apply=True))
        # augs_list.append(T.OpticalDistortion(border_mode=cv2.BORDER_CONSTANT)) - can't handle boundboxes
    elif mode == 'debug':
        augs_list.append(albumentations.CenterCrop(height=params.data.net_hw[0], width=params.data.net_hw[1], always_apply=True))
    if mode != 'inference':
        if params.augmentation.get('blur_limit', 4):
            augs_list.append(T.Blur(blur_limit=params.augmentation.get('blur_limit', 4)))
        if params.augmentation.get('RandomBrightnessContrast', True):
            augs_list.append(T.RandomBrightnessContrast())
        #augs_list.append(T.MotionBlur())
        if params.augmentation.get('JpegCompression', True):
            augs_list.append(T.JpegCompression(quality_lower=30, quality_upper=100))
        #augs_list.append(T.VerticalFlip())
        if params.augmentation.get('HorizontalFlip', True):
            augs_list.append(T.HorizontalFlip())

    return albumentations.ReplayCompose(augs_list, p=1., bbox_params = {'format':'albumentations', 'min_visibility':0.5})
def augmentation(mode, target_size, prob=0.5, aug_m=2):
    '''
    description: augmentation
    mode: 'train' 'test'
    target_size: int or list, the shape of image ,
    aug_m: Strength of transform
    '''
    high_p = prob
    low_p = high_p / 2.0
    M = aug_m
    first_size = [int(x / 0.7) for x in target_size]

    if mode == 'train':
        return composition.Compose([
            transforms.Resize(first_size[0], first_size[1], interpolation=3),
            transforms.Flip(p=0.5),
            composition.OneOf([
                RandomCenterCut(scale=0.1 * M),
                transforms.ShiftScaleRotate(shift_limit=0.05 * M,
                                            scale_limit=0.1 * M,
                                            rotate_limit=180,
                                            border_mode=cv2.BORDER_CONSTANT,
                                            value=0),
                albumentations.imgaug.transforms.IAAAffine(
                    shear=(-10 * M, 10 * M), mode='constant')
            ],
                              p=high_p),
            transforms.RandomBrightnessContrast(
                brightness_limit=0.1 * M, contrast_limit=0.03 * M, p=high_p),
            transforms.HueSaturationValue(hue_shift_limit=5 * M,
                                          sat_shift_limit=15 * M,
                                          val_shift_limit=10 * M,
                                          p=high_p),
            transforms.OpticalDistortion(distort_limit=0.03 * M,
                                         shift_limit=0,
                                         border_mode=cv2.BORDER_CONSTANT,
                                         value=0,
                                         p=low_p),
            composition.OneOf([
                transforms.Blur(blur_limit=7),
                albumentations.imgaug.transforms.IAASharpen(),
                transforms.GaussNoise(var_limit=(2.0, 10.0), mean=0),
                transforms.ISONoise()
            ],
                              p=low_p),
            transforms.Resize(target_size[0], target_size[1], interpolation=3),
            transforms.Normalize(mean=(0.5, 0.5, 0.5),
                                 std=(0.5, 0.5, 0.5),
                                 max_pixel_value=255.0)
        ],
                                   p=1)

    else:
        return composition.Compose([
            transforms.Resize(target_size[0], target_size[1], interpolation=3),
            transforms.Normalize(mean=(0.5, 0.5, 0.5),
                                 std=(0.5, 0.5, 0.5),
                                 max_pixel_value=255.0)
        ],
                                   p=1)
def augment(im, params=None):
    """
    Perform data augmentation on some image using the albumentations package.

    Parameters
    ----------
    im : Numpy array
    params : dict or None
        Contains the data augmentation parameters
        Mandatory keys:
        - h_flip ([0,1] float): probability of performing an horizontal left-right mirroring.
        - v_flip ([0,1] float): probability of performing an vertical up-down mirroring.
        - rot ([0,1] float):  probability of performing a rotation to the image.
        - rot_lim (int):  max degrees of rotation.
        - stretch ([0,1] float):  probability of randomly stretching an image.
        - crop ([0,1] float): randomly take an image crop.
        - zoom ([0,1] float): random zoom applied to crop_size.
            --> Therefore the effective crop size at each iteration will be a
                random number between 1 and crop*(1-zoom). For example:
                  * crop=1, zoom=0: no crop of the image
                  * crop=1, zoom=0.1: random crop of random size between 100% image and 90% of the image
                  * crop=0.9, zoom=0.1: random crop of random size between 90% image and 80% of the image
                  * crop=0.9, zoom=0: random crop of always 90% of the image
                  Image size refers to the size of the shortest side.
        - blur ([0,1] float):  probability of randomly blurring an image.
        - pixel_noise ([0,1] float):  probability of randomly adding pixel noise to an image.
        - pixel_sat ([0,1] float):  probability of randomly using HueSaturationValue in the image.
        - cutout ([0,1] float):  probability of using cutout in the image.

    Returns
    -------
    Numpy array
    """

    ## 1) Crop the image
    effective_zoom = np.random.rand() * params['zoom']
    crop = params['crop'] - effective_zoom

    ly, lx, channels = im.shape
    crop_size = int(crop * min([ly, lx]))
    rand_x = np.random.randint(low=0, high=lx - crop_size + 1)
    rand_y = np.random.randint(low=0, high=ly - crop_size + 1)

    crop = transforms.Crop(x_min=rand_x,
                           y_min=rand_y,
                           x_max=rand_x + crop_size,
                           y_max=rand_y + crop_size)

    im = crop(image=im)['image']

    ## 2) Now add the transformations for augmenting the image pixels
    transform_list = []

    # Add random stretching
    if params['stretch']:
        transform_list.append(
            imgaug_transforms.IAAPerspective(scale=0.1, p=params['stretch']))

    # Add random rotation
    if params['rot']:
        transform_list.append(
            transforms.Rotate(limit=params['rot_lim'], p=params['rot']))

    # Add horizontal flip
    if params['h_flip']:
        transform_list.append(transforms.HorizontalFlip(p=params['h_flip']))

    # Add vertical flip
    if params['v_flip']:
        transform_list.append(transforms.VerticalFlip(p=params['v_flip']))

    # Add some blur to the image
    if params['blur']:
        transform_list.append(
            albumentations.OneOf([
                transforms.MotionBlur(blur_limit=7, p=1.),
                transforms.MedianBlur(blur_limit=7, p=1.),
                transforms.Blur(blur_limit=7, p=1.),
            ],
                                 p=params['blur']))

    # Add pixel noise
    if params['pixel_noise']:
        transform_list.append(
            albumentations.OneOf(
                [
                    transforms.CLAHE(clip_limit=2, p=1.),
                    imgaug_transforms.IAASharpen(p=1.),
                    imgaug_transforms.IAAEmboss(p=1.),
                    transforms.RandomBrightnessContrast(contrast_limit=0,
                                                        p=1.),
                    transforms.RandomBrightnessContrast(brightness_limit=0,
                                                        p=1.),
                    transforms.RGBShift(p=1.),
                    transforms.RandomGamma(p=1.)  #,
                    # transforms.JpegCompression(),
                    # transforms.ChannelShuffle(),
                    # transforms.ToGray()
                ],
                p=params['pixel_noise']))

    # Add pixel saturation
    if params['pixel_sat']:
        transform_list.append(
            transforms.HueSaturationValue(p=params['pixel_sat']))

    # Remove randomly remove some regions from the image
    if params['cutout']:
        ly, lx, channels = im.shape
        scale_low, scale_high = 0.05, 0.25  # min and max size of the squares wrt the full image
        scale = np.random.uniform(scale_low, scale_high)
        transform_list.append(
            transforms.Cutout(num_holes=8,
                              max_h_size=int(scale * ly),
                              max_w_size=int(scale * lx),
                              p=params['cutout']))

    # Compose all image transformations and augment the image
    augmentation_fn = albumentations.Compose(transform_list)
    im = augmentation_fn(image=im)['image']

    return im
Beispiel #5
0
def augment(im, params=None):
    """
    Perform data augmentation on some image using the albumentations package.

    Parameters
    ----------
    im : Numpy array
    params : dict or None
        Contains the data augmentation parameters
        Mandatory keys:
        - h_flip ([0,1] float): probability of performing an horizontal left-right mirroring.
        - v_flip ([0,1] float): probability of performing an vertical up-down mirroring.
        - rot ([0,1] float):  probability of performing a rotation to the image.
        - rot_lim (int):  max degrees of rotation.
        - stretch ([0,1] float):  probability of randomly stretching an image.
        - expand ([True, False] bool): whether to pad the image to a square shape with background color canvas.
        - crop ([0,1] float): randomly take an image crop.
        - invert_col ([0, 1] float): randomly invert the colors of the image. p=1 -> invert colors (VPR)
        - zoom ([0,1] float): random zoom applied to crop_size.
            --> Therefore the effective crop size at each iteration will be a
                random number between 1 and crop*(1-zoom). For example:
                  * crop=1, zoom=0: no crop of the image
                  * crop=1, zoom=0.1: random crop of random size between 100% image and 90% of the image
                  * crop=0.9, zoom=0.1: random crop of random size between 90% image and 80% of the image
                  * crop=0.9, zoom=0: random crop of always 90% of the image
                  Image size refers to the size of the shortest side.
        - blur ([0,1] float):  probability of randomly blurring an image.
        - pixel_noise ([0,1] float):  probability of randomly adding pixel noise to an image.
        - pixel_sat ([0,1] float):  probability of randomly using HueSaturationValue in the image.
        - cutout ([0,1] float):  probability of using cutout in the image.

    Returns
    -------
    Numpy array
    """
    ## 1) Expand the image by padding it with bg-color canvas
    if params["expand"]:
        desired_size = max(im.shape)
        # check bg
        if np.argmax(im.shape) > 0:
            bgcol = tuple(np.repeat(int(np.mean(im[[0, -1], :, :])), 3))
        else:
            bgcol = tuple(np.repeat(int(np.mean(im[:, [0, -1], :])), 3))

        im = Image.fromarray(im)
        old_size = im.size  # old_size[0] is in (width, height) format

        ratio = float(desired_size) / max(old_size)
        new_size = tuple([int(x * ratio) for x in old_size])
        im = im.resize(new_size, Image.ANTIALIAS)
        # create a new image and paste the resized on it
        new_im = Image.new("RGB", (desired_size, desired_size), color=bgcol)
        new_im.paste(im, ((desired_size - new_size[0]) // 2,
                          (desired_size - new_size[1]) // 2))

        im = np.array(new_im)

    ## 2) Crop the image
    if params["crop"] and params["crop"] != 1:
        effective_zoom = np.random.rand() * params['zoom']
        crop = params['crop'] - effective_zoom

        ly, lx, channels = im.shape
        crop_size = int(crop * min([ly, lx]))
        rand_x = np.random.randint(low=0, high=lx - crop_size + 1)
        rand_y = np.random.randint(low=0, high=ly - crop_size + 1)

        crop = transforms.Crop(x_min=rand_x,
                               y_min=rand_y,
                               x_max=rand_x + crop_size,
                               y_max=rand_y + crop_size)

        im = crop(image=im)['image']

    if params["enhance"]:
        im = Image.fromarray(im)
        enhancer = ImageEnhance.Contrast(im)
        im = np.array(enhancer.enhance(params["enhance"]))

    ## 3) Now add the transformations for augmenting the image pixels
    transform_list = []

    if params['invert_col']:
        transform_list.append(transforms.InvertImg(p=params['invert_col']))

    # Add random stretching
    if params['stretch']:
        transform_list.append(
            imgaug_transforms.IAAPerspective(scale=0.1, p=params['stretch']))

    # Add random rotation
    if params['rot']:
        transform_list.append(
            transforms.Rotate(limit=params['rot_lim'], p=params['rot']))

    # Add horizontal flip
    if params['h_flip']:
        transform_list.append(transforms.HorizontalFlip(p=params['h_flip']))

    # Add vertical flip
    if params['v_flip']:
        transform_list.append(transforms.VerticalFlip(p=params['v_flip']))

    # Add some blur to the image
    if params['blur']:
        transform_list.append(
            albumentations.OneOf([
                transforms.MotionBlur(blur_limit=7, p=1.),
                transforms.MedianBlur(blur_limit=7, p=1.),
                transforms.Blur(blur_limit=7, p=1.),
            ],
                                 p=params['blur']))

    # Add pixel noise
    if params['pixel_noise']:
        transform_list.append(
            albumentations.OneOf(
                [
                    transforms.CLAHE(clip_limit=2, p=1.),
                    imgaug_transforms.IAASharpen(p=1.),
                    imgaug_transforms.IAAEmboss(p=1.),
                    transforms.RandomBrightnessContrast(contrast_limit=0,
                                                        p=1.),
                    transforms.RandomBrightnessContrast(brightness_limit=0,
                                                        p=1.),
                    transforms.RGBShift(p=1.),
                    transforms.RandomGamma(p=1.)  #,
                    # transforms.JpegCompression(),
                    # transforms.ChannelShuffle(),
                    # transforms.ToGray()
                ],
                p=params['pixel_noise']))

    # Add pixel saturation
    if params['pixel_sat']:
        transform_list.append(
            transforms.HueSaturationValue(p=params['pixel_sat']))

    # Remove randomly remove some regions from the image
    if params['cutout']:
        ly, lx, channels = im.shape
        scale_low, scale_high = 0.05, 0.25  # min and max size of the squares wrt the full image
        scale = np.random.uniform(scale_low, scale_high)
        transform_list.append(
            transforms.Cutout(num_holes=8,
                              max_h_size=int(scale * ly),
                              max_w_size=int(scale * lx),
                              p=params['cutout']))

    # Compose all image transformations and augment the image
    augmentation_fn = albumentations.Compose(transform_list)
    im = augmentation_fn(image=im)['image']

    return im