Beispiel #1
0
def pspnperplexity(train, test, min_slices, ind_test_method,
                   row_cluster_method):
    c1 = Chrono().start()
    spn = LearnSPN(alpha=0.001,
                   min_slices=min_slices,
                   cluster_prep_method="sqrt",
                   ind_test_method=ind_test_method,
                   row_cluster_method=row_cluster_method).fit_structure(train)
    c1.end()
    time = c1.elapsed()
    pwb, perplexity, words, logl = spn.perplexity(test)

    print(
        "SPN ll=%s %.3f per-word bound, %.1f perplexity estimate based on a held-out corpus of %i documents with %i words"
        % (logl, pwb, perplexity, test.shape[0], words))
    return perplexity, logl, time, spn.size()
Beispiel #2
0
    printlocal(featureNames)
    printlocal(len(featureNames))
    printlocal(data.shape)

    stats = Stats(name=dsname)
    for train, test, i in kfolded(data, 5):
        spn = LearnSPN(alpha=0.001,
                       min_instances_slice=80,
                       cluster_prep_method="sqrt",
                       cache=memory).fit_structure(train)

        printlocal("done")
        stats.addConfig("PSPN", spn.config)
        # stats.add("SPN Pois", Stats.LOG_LIKELIHOOD, llspn(spn, test))
        printlocal("LL")
        stats.add("PSPN", Stats.MODEL_SIZE, spn.size())
        printlocal("model size")
        prediction = spnComputeLambdas(spn, test)
        printlocal("model spnComputeLambdas")
        #prediction2 = spnComputeLambdasCuda(spn, test)
        prediction2 = spnComputeLambdas2(spn, test)
        printlocal("model spnComputeLambdas2")
        stats.add("PSPN", Stats.ABS_ERROR, abs_error(test, prediction))
        stats.add("PSPN", Stats.SQUARED_ERROR, squared_error(test, prediction))
        stats.add("PSPN_MJ", Stats.ABS_ERROR, squared_error(test, prediction2))
        stats.add("PSPN_MJ", Stats.SQUARED_ERROR,
                  squared_error(test, prediction2))

        pdn = pdnlearn(train, featureNames, max_depth=30, iterations=20)
        stats.addConfig("PDN Pois", pdn.config)
        prediction = pdn.getLambdas(test)