Beispiel #1
0
def get_fixation_unconstrained_kb(S, d, log_kb):
    """
    This uses the Kacser and Burns effect instead of the sign function.
    """
    soft_sign_S = algopy.tanh(algopy.exp(log_kb) * S)
    D = d * soft_sign_S
    H = algopy.zeros_like(S)
    for i in range(H.shape[0]):
        for j in range(H.shape[1]):
            H[i, j] = 1. / kimrecessive.denom_piecewise(0.5 * S[i, j], D[i, j])
    return H
Beispiel #2
0
def get_fixation_unconstrained_kb(S, d, log_kb):
    """
    This uses the Kacser and Burns effect instead of the sign function.
    """
    soft_sign_S = algopy.tanh(algopy.exp(log_kb)*S)
    D = d * soft_sign_S
    H = algopy.zeros_like(S)
    for i in range(H.shape[0]):
        for j in range(H.shape[1]):
            H[i, j] = 1. / kimrecessive.denom_piecewise(
                    0.5*S[i, j], D[i, j])
    return H
Beispiel #3
0
def get_fixation_unconstrained_kb_fquad(
        S, d, log_kb, x, w, codon_neighbor_mask):
    """
    This uses the Kacser and Burns effect instead of the sign function.
    """
    #TODO: possibly use a mirror symmetry to double the speed
    soft_sign_S = algopy.tanh(algopy.exp(log_kb)*S)
    D = d * soft_sign_S
    H = algopy.zeros_like(S)
    for i in range(H.shape[0]):
        for j in range(H.shape[1]):
            if codon_neighbor_mask[i, j]:
                H[i, j] = 1. / kimrecessive.denom_fixed_quad(
                        0.5*S[i, j], D[i, j], x, w)
    return H
Beispiel #4
0
def get_fixation_unconstrained_kb_fquad(
        S, d, log_kb, x, w, codon_neighbor_mask):
    """
    This uses the Kacser and Burns effect instead of the sign function.
    """
    #TODO: possibly use a mirror symmetry to double the speed
    soft_sign_S = algopy.tanh(algopy.exp(log_kb)*S)
    D = d * soft_sign_S
    H = algopy.zeros_like(S)
    for i in range(H.shape[0]):
        for j in range(H.shape[1]):
            if codon_neighbor_mask[i, j]:
                H[i, j] = 1. / kimrecessive.denom_fixed_quad(
                        0.5*S[i, j], D[i, j], x, w)
    return H