Beispiel #1
0
def create_plot(filename, file, sampling='easy'):
    data = pd.read_csv(filename)
    print filename
    rel_col = ['Start X', 'Start Y', 'Start Z', 'End X', 'End Y', 'End Z']
    data = data[rel_col]
    data_1 = data[['Start X', 'Start Y', 'Start Z']]
    data_2 = data[['End X', 'End Y', 'End Z']]
    data_2.columns = ['Start X', 'Start Y', 'Start Z']
    dat_new = pd.concat((data_1, data_2), axis=0)
    dat_new = dat_new.dropna(axis=0)
    dat_new = (dat_new - dat_new.mean()) / np.linalg.norm(dat_new.values)

    #set sampling rate
    sam_dict = {'easy': 0.7, 'medium': 0.1, 'hard': 0.01}
    sam_rate = sam_dict[sampling]

    #sample using sampling rate
    dat_new.reset_index(drop=True, inplace=True)
    ind = np.random.choice(dat_new.index,
                           size=dat_new.shape[0] * sam_rate,
                           replace=False)
    dat_new = dat_new.iloc[ind, :]

    # find highest, lowest standard deviation vector and orient the model accordingly
    highest = np.where(dat_new.std() == dat_new.std().max())[0][0]
    lowest = np.where(dat_new.std() == dat_new.std().min())[0][0]
    if highest == 1:
        dat_new = np.dot(dat_new, rotateZMatrix(math.pi / 2))
    elif highest == 2:
        dat_new = np.dot(dat_new.values, rotateYMatrix(math.pi / 2))
    data_plot = pd.DataFrame(dat_new,
                             columns=['Start X', 'Start Y', 'Start Z'])

    #Plot
    fig = plt.figure()

    data_plot = pd.DataFrame(data_plot,
                             columns=['Start X', 'Start Y', 'Start Z'])
    ax = plt.axes(projection='3d')
    x = data_plot['Start X']
    y = data_plot['Start Y']
    z = data_plot['Start Z']
    #name the plot files
    name_front = 'temp/' + file[:-4] + '_front'
    name_side = 'temp/' + file[:-4] + '_side'
    name_top = 'temp/' + file[:-4] + '_top'
    ax.scatter(x, y, z)
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    ax.view_init(azim=0)
    plt.savefig('../static/' + name_front + sampling)
    #side view
    ax.view_init(azim=90)
    plt.savefig('../static/' + name_side + sampling)
    #top view
    ax.view_init(elev=90, azim=0)
    plt.savefig('../static/' + name_top + sampling)
Beispiel #2
0
def create_plot(filename, file, sampling = 'easy'):
    data= pd.read_csv(filename)
    print filename
    rel_col = ['Start X','Start Y','Start Z','End X','End Y','End Z']
    data = data[rel_col]
    data_1 = data[['Start X','Start Y','Start Z']]
    data_2 = data[['End X','End Y','End Z']]
    data_2.columns = ['Start X','Start Y','Start Z']
    dat_new = pd.concat((data_1,data_2),axis=0)
    dat_new = dat_new.dropna(axis=0)
    dat_new = (dat_new-dat_new.mean())/np.linalg.norm(dat_new.values)

    #set sampling rate
    sam_dict = {'easy':0.7,'medium':0.1,'hard':0.01}
    sam_rate = sam_dict[sampling]

    #sample using sampling rate
    dat_new.reset_index(drop=True,inplace=True)
    ind = np.random.choice(dat_new.index, size=dat_new.shape[0]*sam_rate, replace=False)
    dat_new = dat_new.iloc[ind,:]

    # find highest, lowest standard deviation vector and orient the model accordingly
    highest = np.where(dat_new.std()==dat_new.std().max())[0][0]
    lowest = np.where(dat_new.std()==dat_new.std().min())[0][0]
    if highest == 1:
        dat_new = np.dot(dat_new,rotateZMatrix(math.pi/2))
    elif highest == 2:
        dat_new = np.dot(dat_new.values,rotateYMatrix(math.pi/2))
    data_plot = pd.DataFrame(dat_new, columns = ['Start X','Start Y','Start Z'])

    #Plot
    fig = plt.figure()

    data_plot = pd.DataFrame(data_plot, columns = ['Start X','Start Y','Start Z'])
    ax = plt.axes(projection='3d')
    x = data_plot['Start X']
    y = data_plot['Start Y']
    z = data_plot['Start Z']
    #name the plot files
    name_front = 'temp/' + file[:-4] + '_front'
    name_side = 'temp/' + file[:-4] + '_side'
    name_top = 'temp/' + file[:-4] + '_top'
    ax.scatter(x, y, z)
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    ax.view_init(azim=0)
    plt.savefig('../static/'+ name_front + sampling)
    #side view
    ax.view_init(azim=90)
    plt.savefig('../static/'+ name_side + sampling)
    #top view
    ax.view_init(elev=90,azim=0)
    plt.savefig('../static/'+ name_top + sampling)
Beispiel #3
0
 #There are 6 relevant columns and 3 of them repeat so concat them on top of each other
 dat_1 = load_dat[['Start X','Start Y','Start Z']]
 dat_2 = load_dat[['End X','End Y','End Z']]
 dat_2.columns = ['Start X','Start Y','Start Z']
 dat_new = pd.concat((dat_1,dat_2),axis=0)
 dat_new = dat_new.dropna(axis=0)
 columns = dat_new.columns
 #normalize using the norm
 dat_new = (dat_new -dat_new.mean())/np.linalg.norm(dat_new.values)
 # find highest, lowest standard deviation vector and orient the model accordingly
 highest = np.where(dat_new.std()==dat_new.std().max())[0][0]
 lowest = np.where(dat_new.std()==dat_new.std().min())[0][0]
 if highest == 1:
     dat_new = np.dot(dat_new,rotateZMatrix(math.pi/2))
 elif highest == 2:
     dat_new = np.dot(dat_new.values,rotateYMatrix(math.pi/2))
 dat_new = pd.DataFrame(dat_new, columns = ['Start X','Start Y','Start Z'])
 dat_new['number']= np.ones((dat_new.shape[0],1))*i
 #max and min xyz after scale
 max_x = dat_new['Start X'].max()
 max_y = dat_new['Start Y'].max()
 max_z = dat_new['Start Z'].max()
 min_x = dat_new['Start X'].min()
 min_y = dat_new['Start Y'].min()
 min_z = dat_new['Start Z'].min()
 #calculate width height length
 width = max_y-min_y
 length = max_x-min_x
 height = max_z-min_z
 #ratio of length and width
 ratio_xy = float(dat_new['Start Y'].std())/(