def test_misses_cost_with_pgbs(self):

        # Sensitive closed itemsets whose support needs to be reduced
        sensitive_IS = {frozenset(['1', '2']), frozenset(['4'])}

        # PGBS needs input in this format
        sensitive_IL = pd.DataFrame(
            {'itemset': [list(l) for l in sensitive_IS],
             'threshold': [self.sigma_min, self.sigma_min]})

        original_database = self.basket_sets.copy()
        modified_database = self.basket_sets.copy()

        # No return value, instead it modifies input database in place
        pgbs(modified_database, sensitive_IL)

        # Get all itemsets and supports in D (original_database)
        sigma_model = 1 / len(original_database)
        original_IS = fpgrowth(original_database, min_support=sigma_model, use_colnames=True, verbose=False)

        # Get all itemsets and supports in D' (modified_database)
        mofidied_F_IS = fpgrowth(modified_database, min_support=sigma_model, use_colnames=True, verbose=False)

        # Find set of non-sensitive frequent itemsets in D
        a = remove_sensitive_subsets(original_IS, self.sensitive_IS)

        # Find set of non-sensitive frequent itemsets in D'
        b = remove_sensitive_subsets(mofidied_F_IS[mofidied_F_IS["support"] >= self.sigma_min], self.sensitive_IS)

        mc = misses_cost(a, b)
        self.assertEqual(mc, 0.18181818181818182)
    def test_artifactual_patterns_with_pgbs(self):

        # PGBS needs input in this format
        sensitive_IL = pd.DataFrame({
            'itemset': [list(l) for l in self.sensitive_IS],
            'threshold': [self.sigma_min, self.sigma_min]
        })

        original_database = self.basket_sets.copy()
        modified_database = self.basket_sets.copy()

        # No return value, instead it modifies input database in place
        pgbs(modified_database, sensitive_IL)

        # Get all itemsets and supports in D (original_database)
        sigma_model = 1 / len(original_database)
        original_IS = fpgrowth(original_database,
                               min_support=sigma_model,
                               use_colnames=True,
                               verbose=False)

        # Get all itemsets and supports in D' (modified_database)
        mofidied_F_IS = fpgrowth(modified_database,
                                 min_support=sigma_model,
                                 use_colnames=True,
                                 verbose=False)

        # All itemsets in original database
        a = set(original_IS["itemsets"])

        # All itemsets in sanitised database
        b = set(mofidied_F_IS["itemsets"])

        af = artifactual_patterns(a, b)
        self.assertEqual(af, 0.0)
Beispiel #3
0
    def test_information_loss_with_pgbs(self):
        # Sensitive closed itemsets whose support needs to be reduced
        sensitive_itemsets = pd.DataFrame({
            'itemset': [['1', '2'], ['1', '2', '4'], ['4']],
            'threshold': [self.sigma_min, self.sigma_min, self.sigma_min]
        })

        original_database = self.basket_sets.copy()
        modified_database = self.basket_sets.copy()

        # No return value, instead it modifies input database in place
        print(sensitive_itemsets)
        print(sensitive_itemsets.dtypes)
        pgbs(modified_database, sensitive_itemsets)

        # Give all itemsets and supports in D (original_database)
        sigma_model = 1 / len(original_database)
        a = fpgrowth(original_database,
                     min_support=sigma_model,
                     use_colnames=True,
                     verbose=False)

        # Give all itemsets and supports in D' (modified_database)
        b = fpgrowth(modified_database,
                     min_support=sigma_model,
                     use_colnames=True,
                     verbose=False)

        il = information_loss(a, b)
        self.assertEqual(0.5542, round(il, 4))
Beispiel #4
0
    def test_pgbs(self):

        basket_sets = im.import_dataset("chess").sample(100) # limit due to testing

        original_database = basket_sets.copy()
        modified_database = basket_sets.copy()

        # We partition the Chess databases into 5 bins, then randomly select 2 itemsets from each bin,
        # assign the minimum support threshold as the minimum support given in the support range
        # This takes a long time, so will just use their values. Table 3: Support ranges for databases.
        sigma_min = min([0.6001, 0.6136, 0.6308, 0.6555, 0.6974])

        sigma_model = 0.5
        original_IS = fpgrowth(original_database, min_support=sigma_model, use_colnames=True)

        # Get 10 sensitive itemsets
        sensitive_IS = original_IS.sample(10)
        sensitive_IS_PGBS = pd.DataFrame({
            'itemset': [list(IS) for IS in sensitive_IS["itemsets"]],
            'threshold': [sigma_min for _ in sensitive_IS["support"]]})

        pgbs(modified_database, sensitive_IS_PGBS)

        # Give all itemsets and supports in D (original_database)
        a = original_IS

        # Give all itemsets and supports in D' (modified_database)
        b = fpgrowth(modified_database, min_support=sigma_model, use_colnames=True)

        il = information_loss(a, b)
        self.assertEqual(0.5542, round(il, 4))
    def test_hiding_failure_with_pgbs(self):

        # Sensitive closed itemsets whose support needs to be reduced
        sensitive_IS = {frozenset(['1', '2']), frozenset(['4'])}

        # PGBS needs input in this format
        sensitive_IL = pd.DataFrame({
            'itemset': [list(l) for l in sensitive_IS],
            'threshold': [self.sigma_min, self.sigma_min]
        })

        original_database = self.basket_sets.copy()
        modified_database = self.basket_sets.copy()

        # No return value, instead it modifies input database in place
        pgbs(modified_database, sensitive_IL)

        # Give all itemsets and supports in D (original_database)
        sigma_model = 1 / len(original_database)
        original_IS = fpgrowth(original_database,
                               min_support=sigma_model,
                               use_colnames=True,
                               verbose=False)

        # Give all itemsets and supports in D' (modified_database)
        mofidied_F_IS = fpgrowth(modified_database,
                                 min_support=sigma_model,
                                 use_colnames=True,
                                 verbose=False)

        # Find set of frequent itemsets in D
        a = get_sensitive_subsets(
            original_IS.loc[original_IS["support"] > self.sigma_min],
            sensitive_IS)["itemsets"]

        # Find set of frequent itemsets in D'
        b = get_sensitive_subsets(
            mofidied_F_IS.loc[mofidied_F_IS["support"] > self.sigma_min],
            sensitive_IS)["itemsets"]

        hf = hiding_failure(a, b)
        self.assertEqual(0.0, hf)
Beispiel #6
0
def main(datasets):
    #Create the base of a table
    table_11 = pd.DataFrame(columns=['Model',
                                     'Support threshold',
                                     'Model threshold',
                                     'Sensitive itemsets',
                                     'Number of FI before sanitization',
                                     'Information loss expected',
                                     'Number of FI after sanitization',
                                     'Number of FI containing an element of S after RPS',
                                     'Hiding failure',
                                     'Artifactual patterns',
                                     'Misses cost',
                                     'Side effects factor',
                                     'Information loss',
                                     'PGBS time'])

    #Loop through datasets
    for dataset in datasets:
        sigma_model = datasets[dataset][0]

        #Load dataset
        data = im.import_dataset(dataset)
        data = data.astype('bool') #This may be needed for some datasets
        print("\n", dataset, "imported\n")

        #Get frequent itemsets
        freq_model = fpgrowth(data, min_support=sigma_model, use_colnames=True) 

        #Loop through support thresholds
        for sigma_min in datasets[dataset][1:]:
            print("\n", dataset, "FI:", sigma_min)
            
            #Find original frequent itemsets at frequency sigma min
            freq_original = freq_model.loc[freq_model["support"] >= sigma_min]

            for k_freq in [10, 30, 50]:
                print("-", dataset, ":", k_freq, "Sensitive itemsets")

                #Copy the transactions so we can edit it directly
                copied_data = data.copy()
                
                #We pick sensitive itemsets here
                sensitive_IS = get_top_k_sensitive_itemsets(freq_original, k_freq)

                #Start timer for PGBS portion
                total_time_start = time.time()

                #Convert to pandas format for PGBS input
                sensitive_IS_pandas = pd.DataFrame(data=[(sensitive_IS), np.full((len(sensitive_IS)), sigma_min)]).T

                sensitive_IS_pandas.columns = ['itemset', 'threshold']

                #Run PGBS
                print("Running PGBS")
                pgbs(copied_data,sensitive_IS_pandas)
                print("PGBS run")
                pgbs_time = time.time()

                sensitive_IS = convert_to_sets(sensitive_IS)
                
                print("FPGrowth")
                #Reproduce frequent itemsets
                freq_model_sanitized = fpgrowth(copied_data, min_support=sigma_model, use_colnames=True)
                
                #Calculating metrics
                #Variables needed
                freq_sanitized = freq_model_sanitized.loc[freq_model_sanitized["support"] >= sigma_min]

                #Sensitive subsets of frequent itemsets
                freq_sanitized_sensitive = get_sensitive_subsets(freq_sanitized, sensitive_IS)
                freq_original_sensitive = get_sensitive_subsets(freq_original, sensitive_IS)

                #Non sensitive subset of frequent itemsets
                freq_sanitized_nonsensitive = remove_sensitive_subsets(freq_sanitized, sensitive_IS)["itemsets"]
                freq_original_nonsensitive = remove_sensitive_subsets(freq_original, sensitive_IS)["itemsets"]

                #Calculation of metrics
                freq_original_sensitive.to_csv("original.csv")
                freq_sanitized_sensitive.to_csv("sanitized.csv")
                print("len:", len(freq_original_sensitive["itemsets"]), len(freq_sanitized_sensitive["itemsets"]))

                hiding_f = hiding_failure(freq_original_sensitive["itemsets"], freq_sanitized_sensitive["itemsets"])
                artifactual_p = artifactual_patterns(set(freq_original["itemsets"]), set(freq_sanitized["itemsets"]))
                misses_c = misses_cost(freq_original_nonsensitive.copy(), freq_sanitized_nonsensitive.copy())
                side_effect_fac = side_effects_factor(set(freq_original["itemsets"]), set(freq_sanitized["itemsets"]), set(freq_original_sensitive["itemsets"]))

                #Information loss between frequent itemsets in original and sanitized at sigma model
                information_l = information_loss(freq_model.copy(), freq_model_sanitized)

                #Expected information loss if all sensitive frequent itemsets had their support reduced to sigma min
                expected_information_l = expected_information_loss(freq_model.copy(), freq_original_sensitive.copy(), sigma_min)

                #Calculate the end time of this iteration
                end_time = pgbs_time - total_time_start

                #Threshold sanitized database by threshold_min to get frequent itemsets 
                print(f'- PGBS time: {end_time}')

                #Plot support graphs
                dual_support_graph_distribution(freq_model, freq_model_sanitized, sigma_model, dataset+"_PGBS_"+str(sigma_min)+"_"+str(k_freq))

                #Find number of FI in sanitized database containing sensitive itemsets
                num_FI_containing_S_RPS = count_FI_containing_S(freq_sanitized, sensitive_IS)

                #Add to row of table
                new_row = {'Model': dataset,
                           'Model threshold': sigma_model,
                           'Support threshold': sigma_min,
                           'Sensitive itemsets': k_freq,
                           'Number of FI before sanitization': len(freq_original),
                           'Information loss expected': expected_information_l,
                           'Number of FI after sanitization': len(freq_sanitized),
                           'Number of FI containing an element of S after RPS': num_FI_containing_S_RPS,
                           'Hiding failure': hiding_f,
                           'Artifactual patterns': artifactual_p,
                           'Misses cost': misses_c,
                           'Side effects factor': side_effect_fac,
                           'Information loss': information_l,
                           'PGBS time': end_time}

                #Update after each one just so we are sure we are recording results
                table_11 = table_11.append(new_row, ignore_index=True)
                table_11.to_csv('table_pgbs.csv')
def main(datasets, experiment):
    for dataset in datasets:
        sigma_model = datasets[dataset][0]
        sigma_min = datasets[dataset][1]
        k_freq = 10
        #Load dataset
        data = im.import_dataset(dataset)
        data = data.astype('bool')  #This may be needed for some datasets
        print("\n", dataset, "imported\n")

        #Convert to closed itemsets
        current_model, freq_model = get_closed_itemsets(data, sigma_model)
        freq_original = freq_model.loc[freq_model["support"] >= sigma_min]
        sensitive_IS = get_top_k_sensitive_itemsets(freq_original, k_freq)

        if experiment == "MuRPS-range":
            #Convert to pandas format for MRPS input
            sensitive_IS_pandas = pd.DataFrame(
                data=[(sensitive_IS),
                      np.array([
                          0.8, 0.79, 0.78, 0.77, 0.76, 0.75, 0.74, 0.73, 0.72,
                          0.71
                      ]),
                      np.array([
                          0.795, 0.785, 0.775, 0.765, 0.755, 0.745, 0.735,
                          0.725, 0.715, 0.705
                      ])]).T

        elif experiment == "MuRPS-set":
            #Convert to pandas format for MRPS input
            thresholds = [
                0.7975, 0.7875, 0.7775, 0.7675, 0.7575, 0.7475, 0.7375, 0.7275,
                0.7175, 0.7075
            ]
            sensitive_IS_pandas = pd.DataFrame(data=[(sensitive_IS),
                                                     np.array(thresholds),
                                                     np.array(thresholds)]).T

        elif experiment == "SWA-set":
            db = im.convert_to_transaction(data)
            thresholds = [
                0.7975, 0.7875, 0.7775, 0.7675, 0.7575, 0.7475, 0.7375, 0.7275,
                0.7175, 0.7075
            ]
            #Convert to pandas format for SWA input
            sensitive_rules = get_disclosures(sensitive_IS, freq_model,
                                              thresholds)
            print(sensitive_rules)

            #Run SWA
            SWA(db, sensitive_rules, db.shape[0])

            #Convert to frequent itemsets
            sensitive_IS = convert_to_sets(sensitive_IS)
            data = im.convert_to_matrix(db)
            freq_model_sanitized = fpgrowth(data,
                                            min_support=sigma_model,
                                            use_colnames=True)
            freq_sanitized = freq_model_sanitized.loc[
                freq_model_sanitized["support"] >= sigma_min]

        elif experiment == "PGBS-set":
            thresholds = [
                0.7975, 0.7875, 0.7775, 0.7675, 0.7575, 0.7475, 0.7375, 0.7275,
                0.7175, 0.7075
            ]
            sensitive_IS_pandas = pd.DataFrame(
                data=[(sensitive_IS),
                      np.full((len(sensitive_IS)), thresholds)]).T

            sensitive_IS_pandas.columns = ['itemset', 'threshold']

            #Run PGBS
            pgbs(data, sensitive_IS_pandas)

            #Convert to frequent itemsets
            sensitive_IS = convert_to_sets(sensitive_IS)
            freq_model_sanitized = fpgrowth(data,
                                            min_support=sigma_model,
                                            use_colnames=True)
            freq_sanitized = freq_model_sanitized.loc[
                freq_model_sanitized["support"] >= sigma_min]

        if experiment[0] == "M":
            sensitive_IS_pandas.columns = [
                'itemset', 'upper_threshold', 'lower_threshold'
            ]
            print(sensitive_IS_pandas)

            #Run RPS random threshold
            sanitized_closed_IS = rps_two_thresholds(
                model=current_model, sensitiveItemsets=sensitive_IS_pandas)

            #Reproduce frequent itemsets
            freq_model_sanitized = itemsets_from_closed_itemsets(
                closed_itemsets=sanitized_closed_IS,
                possible_itemsets=freq_model['itemsets'])

        #Plot support graphs
        dual_support_graph_distribution(
            freq_model, freq_model_sanitized, sigma_model,
            dataset + "_presentation_" + experiment + "_" + str(k_freq))

        #Calculate and print information loss
        information_l = information_loss(freq_model.copy(),
                                         freq_model_sanitized)
        print("Information loss:", information_l)