Beispiel #1
0
def test_natural_scenes(ns, nwb_b, analysis_b_new):    
    ns_new = NaturalScenes.from_analysis_file(BODS(nwb_b), analysis_b_new)
    #assert np.allclose(ns.sweep_response, ns_new.sweep_response)
    assert np.allclose(ns.mean_sweep_response, ns_new.mean_sweep_response, equal_nan=True)

    assert np.allclose(ns.noise_correlation, ns_new.noise_correlation, equal_nan=True)
    assert np.allclose(ns.signal_correlation, ns_new.signal_correlation, equal_nan=True)
    assert np.allclose(ns.representational_similarity, ns_new.representational_similarity, equal_nan=True)
def test_natural_scenes(ns, nwb_b, analysis_b_new):    
    ns_new = NaturalScenes.from_analysis_file(BODS(nwb_b), analysis_b_new)
    #assert np.allclose(ns.sweep_response, ns_new.sweep_response)
    assert np.allclose(ns.mean_sweep_response, ns_new.mean_sweep_response, equal_nan=True)

    assert np.allclose(ns.noise_correlation, ns_new.noise_correlation, equal_nan=True)
    assert np.allclose(ns.signal_correlation, ns_new.signal_correlation, equal_nan=True)
    assert np.allclose(ns.representational_similarity, ns_new.representational_similarity, equal_nan=True)
def build_type(nwb_file, data_file, configs, output_dir, type_name):
    data_set = BrainObservatoryNwbDataSet(nwb_file)
    try:
        if type_name == "dg":
            dga = DriftingGratings.from_analysis_file(data_set, data_file)
            build_drifting_gratings(dga, configs, output_dir)
        elif type_name == "sg":
            sga = StaticGratings.from_analysis_file(data_set, data_file)
            build_static_gratings(sga, configs, output_dir)
        elif type_name == "nm1":
            nma = NaturalMovie.from_analysis_file(data_set, data_file, si.NATURAL_MOVIE_ONE)
            build_natural_movie(nma, configs, output_dir, si.NATURAL_MOVIE_ONE)
        elif type_name == "nm2":
            nma = NaturalMovie.from_analysis_file(data_set, data_file, si.NATURAL_MOVIE_TWO)
            build_natural_movie(nma, configs, output_dir, si.NATURAL_MOVIE_TWO)
        elif type_name == "nm3":
            nma = NaturalMovie.from_analysis_file(data_set, data_file, si.NATURAL_MOVIE_THREE)
            build_natural_movie(nma, configs, output_dir, si.NATURAL_MOVIE_THREE)
        elif type_name == "ns":
            nsa = NaturalScenes.from_analysis_file(data_set, data_file)
            build_natural_scenes(nsa, configs, output_dir)
        elif type_name == "sp":
            nma = NaturalMovie.from_analysis_file(data_set, data_file, si.NATURAL_MOVIE_ONE)
            build_speed_tuning(nma, configs, output_dir)
        elif type_name == "lsn_on":
            lsna = lsna_check_hvas(data_set, data_file)
            build_locally_sparse_noise(lsna, configs, output_dir, True)
        elif type_name == "lsn_off":
            lsna = lsna_check_hvas(data_set, data_file)
            build_locally_sparse_noise(lsna, configs, output_dir, False)
        elif type_name == "rf":
            lsna = lsna_check_hvas(data_set, data_file)
            build_receptive_field(lsna, configs, output_dir)
        elif type_name == "corr":
            build_correlation_plots(data_set, data_file, configs, output_dir)
        elif type_name == "eye":
            build_eye_tracking_plots(data_set, configs, output_dir)

    except MissingStimulusException as e:
        logging.warning("could not load stimulus (%s)", type_name)
    except Exception as e:
        traceback.print_exc()
        logging.critical("error running stimulus (%s)", type_name)
        raise e
Beispiel #4
0
def ns(nwb_b, analysis_b):
    return NaturalScenes.from_analysis_file(BODS(nwb_b), analysis_b)
def build_correlation_plots(data_set, analysis_file, configs, output_dir):
    sig_corrs = []
    noise_corrs = []

    avail_stims = si.stimuli_in_session(data_set.get_session_type())
    ans = []
    labels = []
    colors = []
    if si.DRIFTING_GRATINGS in avail_stims:
        dg = DriftingGratings.from_analysis_file(data_set, analysis_file)

        if hasattr(dg, 'representational_similarity'):
            ans.append(dg)
            labels.append(si.DRIFTING_GRATINGS_SHORT)
            colors.append(si.DRIFTING_GRATINGS_COLOR)
            setups = [ ( [configs['large']], True ), ( [configs['small']], False )]
            for cfgs, show_labels in setups:
                for fn in build_plots("drifting_gratings_representational_similarity", 1.0, cfgs, output_dir):
                    oplots.plot_representational_similarity(dg.representational_similarity,
                                                            dims=[dg.orivals, dg.tfvals[1:]],
                                                            dim_labels=["dir", "tf"],
                                                            dim_order=[1,0],
                                                            colors=['r','b'],
                                                            labels=show_labels)

    if si.STATIC_GRATINGS in avail_stims:
        sg = StaticGratings.from_analysis_file(data_set, analysis_file)
        if hasattr(sg, 'representational_similarity'):
            ans.append(sg)
            labels.append(si.STATIC_GRATINGS_SHORT)
            colors.append(si.STATIC_GRATINGS_COLOR)
            setups = [ ( [configs['large']], True ), ( [configs['small']], False )]
            for cfgs, show_labels in setups:
                for fn in build_plots("static_gratings_representational_similarity", 1.0, cfgs, output_dir):
                    oplots.plot_representational_similarity(sg.representational_similarity,
                                                            dims=[sg.orivals, sg.sfvals[1:], sg.phasevals],
                                                            dim_labels=["ori", "sf", "ph"],
                                                            dim_order=[1,0,2],
                                                            colors=['r','g','b'], 
                                                            labels=show_labels)

    if si.NATURAL_SCENES in avail_stims:
        ns = NaturalScenes.from_analysis_file(data_set, analysis_file)
        if hasattr(ns, 'representational_similarity'):
            ans.append(ns)
            labels.append(si.NATURAL_SCENES_SHORT)
            colors.append(si.NATURAL_SCENES_COLOR)
            setups = [ ( [configs['large']], True ), ( [configs['small']], False )]
            for cfgs, show_labels in setups:
                for fn in build_plots("natural_scenes_representational_similarity", 1.0, cfgs, output_dir):
                    oplots.plot_representational_similarity(ns.representational_similarity, labels=show_labels)

    if len(ans):
        for an in ans:
            sig_corrs.append(an.signal_correlation)
            extra_dims = range(2,len(an.noise_correlation.shape))
            noise_corrs.append(an.noise_correlation.mean(axis=tuple(extra_dims)))

        for fn in build_plots("correlation", 1.0, [configs['large'], configs['svg']], output_dir):
            oplots.population_correlation_scatter(sig_corrs, noise_corrs, labels, colors, scale=16.0)
            oplots.finalize_with_axes()

        for fn in build_plots("correlation", 1.0, [configs['small']], output_dir):
            oplots.population_correlation_scatter(sig_corrs, noise_corrs, labels, colors, scale=4.0)
            oplots.finalize_no_labels()

        csids = ans[0].data_set.get_cell_specimen_ids()
        for fn, csid, i in build_cell_plots(csids, "signal_correlation", 1.0, [configs['large']], output_dir):
            row = ans[0].row_from_cell_id(csid, i)
            oplots.plot_cell_correlation([ np.delete(sig_corr[row],i) for sig_corr in sig_corrs ], 
                                         labels, colors)
            oplots.finalize_with_axes()

        for fn, csid, i in build_cell_plots(csids, "signal_correlation", 1.0, [configs['small']], output_dir):
            row = ans[0].row_from_cell_id(csid, i)
            oplots.plot_cell_correlation([ np.delete(sig_corr[row],i) for sig_corr in sig_corrs ], 
                                         labels, colors)
            oplots.finalize_no_labels()
def ns(nwb_b, analysis_b):
    return NaturalScenes.from_analysis_file(BODS(nwb_b), analysis_b)