Beispiel #1
0
if 1:  # load area info
    df_temp = pd.read_csv('ice_shelf_area4.csv')
    df_area = df_temp['sampled_km2']
    df_area.index = df_temp['ice_shelf']

if 1:
    time, d = ap.time_filt(time, d, from_time=1994, to_time=2013)
    #time, e = time_filt(time, e, from_time=1992, to_time=20013)

# area-average
#---------------------------------------------------------------------

df = pd.DataFrame(index=time)
df2 = pd.DataFrame(index=time)
for k, s in zip(names, shelves):
    shelf, x, y = ap.get_subset(s, d, lon, lat)
    #error, x, y = ap.get_subset(s, e, lon, lat)
    A = ap.get_area_cells(shelf[10], x, y)
    ts, _ = ap.area_weighted_mean(shelf, A)
    #ts2, _ = ap.area_weighted_mean(error, A)
    df[k] = ts
    #df2[k] = ts2

    if 0:
        print k
        plt.imshow(shelf[10],
                   extent=(x.min(), x.max(), y.min(), y.max()),
                   origin='lower',
                   interpolation='nearest',
                   aspect='auto')
        plt.show()
Beispiel #2
0
if 1: # load area info
    df_temp = pd.read_csv('ice_shelf_area4.csv')
    df_area = df_temp['sampled_km2']
    df_area.index = df_temp['ice_shelf']

if 1:
    time, d = ap.time_filt(time, d, from_time=1994, to_time=2013)
    #time, e = time_filt(time, e, from_time=1992, to_time=20013)

# area-average
#---------------------------------------------------------------------

df = pd.DataFrame(index=time)
df2 = pd.DataFrame(index=time)
for k, s in zip(names, shelves):
    shelf, x, y = ap.get_subset(s, d, lon, lat)
    #error, x, y = ap.get_subset(s, e, lon, lat)
    A = ap.get_area_cells(shelf[10], x, y)
    ts, _ = ap.area_weighted_mean(shelf, A)
    #ts2, _ = ap.area_weighted_mean(error, A)
    df[k] = ts
    #df2[k] = ts2

    if 0:
        print k
        plt.imshow(shelf[10], extent=(x.min(), x.max(), y.min(), y.max()), 
                   origin='lower', interpolation='nearest', aspect='auto')
        plt.show()

# volume
#---------------------------------------------------------------------
Beispiel #3
0
try:
    time = ap.num2year(fin.root.time[:])
except:
    time = fin.root.time[:]
lon = fin.root.lon[:]
lat = fin.root.lat[:]
d = fin.root.dh_mean_mixed_const_xcal[:]
#d = fin.root.dg_mean_xcal[:]
#e = fin.root.dh_error_xcal[:]
#d = fin.root.n_ad_xcal[:]
nz, ny, nx = d.shape
dt = ap.year2date(time)

if 0:
    reg = ap.west
    d, lon, lat = ap.get_subset(reg, d, lon, lat)
    plt.figure()
    plt.imshow(d[10],
               extent=(lon.min(), lon.max(), lat.min(), lat.max()),
               origin='lower',
               interpolation='nearest',
               aspect='auto')
    plt.grid(True)
    plt.show()
    sys.exit()

if 1:
    time, d = ap.time_filt(time, d, from_time=1994, to_time=2013)
    #time, e = time_filt(time, e, from_time=1992, to_time=20013)

# area-average time series
Beispiel #4
0
try:
    time = ap.num2year(fin.root.time[:])
except:
    time = fin.root.time[:]
lon = fin.root.lon[:]
lat = fin.root.lat[:]
d = fin.root.dh_mean_mixed_const_xcal[:]
#d = fin.root.dg_mean_xcal[:]
#e = fin.root.dh_error_xcal[:]
#d = fin.root.n_ad_xcal[:]
nz, ny, nx = d.shape
dt = ap.year2date(time)

if 0:
    reg = (207, 216, -78, -76)
    d, lon, lat = ap.get_subset(reg, d, lon, lat)
    plt.imshow(d[10], extent=(lon.min(), lon.max(), lat.min(), lat.max()), 
               origin='lower', interpolation='nearest', aspect='auto')
    plt.grid(True)
    plt.show()
    sys.exit()

if 1:
    time, d = ap.time_filt(time, d, from_time=1994, to_time=2013)
    #time, e = time_filt(time, e, from_time=1992, to_time=20013)

# bin-area-average time series
df = pd.DataFrame(index=time)
df2 = pd.DataFrame(index=time)
for k, s in zip(names, shelves):
    shelf, x, y = ap.get_subset(s, d, lon, lat)
Beispiel #5
0
def main():

    fname_in = sys.argv[1]

    din = GetData(fname_in, 'a')
    satname = din.satname
    time = change_day(din.time, 15)  # change all days (e.g. 14,15,16,17) to 15
    ts = getattr(din, VAR_TO_CALIBRATE)
    err = din.dh_error
    n_ad = din.n_ad
    n_da = din.n_da
    lon = din.lon
    lat = din.lat
    din.file.close()
    t = ap.num2year(time)

    if SUBSET:  # get subset
        ts, lon2, lat2 = ap.get_subset(ap.amundsen, ts, lon, lat)
        err, lon2, lat2 = ap.get_subset(ap.amundsen, err, lon, lat)
        n_ad, lon2, lat2 = ap.get_subset(ap.amundsen, n_ad, lon, lat)
        n_da, lon2, lat2 = ap.get_subset(ap.amundsen, n_da, lon, lat)
        lon, lat = lon2, lat2

    xx, yy = np.meshgrid(lon, lat)
    nt, ny, nx = ts.shape
    offset_12 = np.full((ny, nx), np.nan)
    offset_23 = np.full((ny, nx), np.nan)

    print 'cross-calibrating time series:', VAR_TO_CALIBRATE

    isfirst = True

    if SAT_NAMES is None:
        satnames = np.unique(din.satname)

    # iterate over every grid cell (all times)
    no_overlap_12 = 0
    no_overlap_23 = 0
    for i in xrange(ny):
        for j in xrange(nx):

            if 0:
                i, j = ap.find_nearest2(xx, yy, (LON, LAT))
                i -= 0
                j += 0

            print 'grid-cell:', i, j

            ts_ij = ts[:, i, j]
            if np.isnan(ts_ij).all(): continue

            # get all time series (all sats) in one df (per grid-cell)
            var = create_df_with_sats(time, ts_ij, satname, SAT_NAMES)

            if DETREND:
                var = var.apply(detrend)

            if FILTER:
                var = var.apply(ap.hp_filt, lamb=7, nan=True)

            if PLOT_TS and (var.count().sum() > 10):
                print 'grid-cell:', i, j
                var.plot(linewidth=3, figsize=(9, 3), legend=False)
                plt.title('Elevation change, dh  (lon=%.2f, lat=%.2f)' %
                          (xx[i, j], yy[i, j]))
                plt.ylabel('m')
                plt.show()

            # compute offset (if ts overlap)
            #---------------------------------------------------
            x = pd.notnull(var)
            overlap_12 = x['ers1'] & x['ers2']
            overlap_23 = x['ers2'] & x['envi']

            if np.sometrue(overlap_12):
                if SAT_BIAS:
                    s1 = var['ers1'][overlap_12]
                    s2 = var['ers2'][overlap_12]
                    if LINEAR_FIT:
                        # using linear fit
                        s1 = s1[s1.notnull() & s2.notnull()]
                        s2 = s2[s1.notnull() & s2.notnull()]
                        if len(s1) > 1 and len(s2) > 1:
                            s1.index, s1[:] = ap.linear_fit(
                                ap.date2year(s1.index), s1.values)
                            s2.index, s2[:] = ap.linear_fit(
                                ap.date2year(s2.index), s2.values)
                            offset = (s1.values[-1] - s1.values[0]) - (
                                s2.values[-1] - s2.values[0])
                        else:
                            pass
                    else:
                        # using absolute values
                        s1 = ap.referenced(s1, to='first')
                        s2 = ap.referenced(s2, to='first')
                        s1[0], s2[0] = np.nan, np.nan  # remove first values
                        offset = np.nanmean(s1 - s2)

                    #pd.concat((s1, s2), axis=1).plot(marker='o')
                else:
                    offset = np.nanmean(var['ers1'] - var['ers2'])
                offset_12[i, j] = offset
            else:
                no_overlap_12 += 1

            if np.sometrue(overlap_23):
                if SAT_BIAS:
                    s2 = var['ers2'][overlap_23]
                    s3 = var['envi'][overlap_23]
                    if LINEAR_FIT:
                        s2 = s2[s2.notnull() & s3.notnull()]
                        s3 = s3[s2.notnull() & s3.notnull()]
                        if len(s2) > 1 and len(s3) > 1:
                            s2.index, s2[:] = ap.linear_fit(
                                ap.date2year(s2.index), s2.values)
                            s3.index, s3[:] = ap.linear_fit(
                                ap.date2year(s3.index), s3.values)
                            offset = (s2.values[-1] - s2.values[0]) - (
                                s3.values[-1] - s3.values[0])
                        else:
                            pass
                    else:
                        s2 = ap.referenced(s2, to='first')
                        s3 = ap.referenced(s3, to='first')
                        s2[0], s3[0] = np.nan, np.nan
                        offset = np.nanmean(s2 - s3)
                    #pd.concat((s2, s3), axis=1).plot(marker='o')
                    #plt.show()
                else:
                    offset = np.nanmean(var['ers2'] - var['envi'])
                offset_23[i, j] = offset
            else:
                no_overlap_23 += 1

            #---------------------------------------------------

    mean_offset_12 = np.nanmean(offset_12)
    median_offset_12 = np.nanmedian(offset_12)
    mean_offset_23 = np.nanmean(offset_23)
    median_offset_23 = np.nanmedian(offset_23)

    if SAVE_TO_FILE:
        fout = tb.open_file(FNAME_OUT, 'w')
        fout.create_array('/', 'lon', lon)
        fout.create_array('/', 'lat', lat)
        fout.create_array('/', 'offset_12', offset_12)
        fout.create_array('/', 'offset_23', offset_23)
        fout.close()

    if PLOT:
        plt.figure()
        plt.subplot(211)
        offset_12 = ap.median_filt(offset_12, 3, 3)
        plt.imshow(offset_12,
                   origin='lower',
                   interpolation='nearest',
                   vmin=-.5,
                   vmax=.5)
        plt.title('ERS1-ERS2')
        plt.colorbar(shrink=0.8)
        plt.subplot(212)
        offset_23 = ap.median_filt(offset_23, 3, 3)
        plt.imshow(offset_23,
                   origin='lower',
                   interpolation='nearest',
                   vmin=-.5,
                   vmax=.5)
        plt.title('ERS2-Envisat')
        #plt.colorbar(shrink=0.3, orientation='h')
        plt.colorbar(shrink=0.8)
        plt.figure()
        plt.subplot(121)
        o12 = offset_12[~np.isnan(offset_12)]
        plt.hist(o12, bins=100)
        plt.title('ERS1-ERS2')
        ax = plt.gca()
        ap.intitle('mean/median = %.2f/%.2f m' %
                   (mean_offset_12, median_offset_12),
                   ax=ax,
                   loc=2)
        plt.xlim(-1, 1)
        plt.subplot(122)
        o23 = offset_23[~np.isnan(offset_23)]
        plt.hist(o23, bins=100)
        plt.title('ERS2-Envisat')
        ax = plt.gca()
        ap.intitle('mean/median = %.2f/%.2f m' %
                   (mean_offset_23, median_offset_23),
                   ax=ax,
                   loc=2)
        plt.xlim(-1, 1)
        plt.show()

    print 'calibrated variable:', VAR_TO_CALIBRATE
    print 'no overlaps:', no_overlap_12, no_overlap_23
    print 'mean offset:', mean_offset_12, mean_offset_23
    print 'median offset:', median_offset_12, median_offset_23
    print 'out file ->', FNAME_OUT
Beispiel #6
0
print 'loading data...'
fin = tb.openFile(DIR + FILE_IN)
try:
    time = ap.num2year(fin.root.time[:])
except:
    time = fin.root.time[:]
dt = ap.year2date(time)
lon = fin.root.lon[:]
lat = fin.root.lat[:]
data = fin.root.dh_mean_mixed_const_xcal[:]
nz, ny, nx = data.shape


if 0: # subset (for testing!)
    region = ap.larsenc
    data, lon, lat = ap.get_subset(region, data, lon, lat)
    nt, ny, nx = data.shape                # i,j,k = t,y,x

if 1: # load mask
    print 'loading mask...'
    f = tb.open_file(FILE_MSK, 'r')
    x_msk = f.root.x[:]
    y_msk = f.root.y[:]
    msk = f.root.mask[:]
    f.close()
    print 'done'

if 1: # 2d -> 1d, x/y -> lon/lat
    x_msk, y_msk = np.meshgrid(x_msk, y_msk)    # 1d -> 2d
    x_msk, y_msk = x_msk.ravel(), y_msk.ravel() # 2d -> 1d
    msk = msk.ravel()
Beispiel #7
0
print 'loading data...'
fin = tb.open_file(DIR + FILE_IN)
try:
    time = ap.num2year(fin.root.time[:])
except:
    time = fin.root.time[:]
lon = fin.root.lon[:]
lat = fin.root.lat[:]
data = fin.root.dh_mean_mixed_const_xcal[:]
nz, ny, nx = data.shape


if 0: # subset
    print 'subsetting...'
    region = ap.dotson
    data, _, _ = ap.get_subset(region, data, lon, lat)
    nt, ny, nx = data.shape                # i,j,k = t,y,x

#------------------------------------------------------

if 0: # plot alphas and MSEs (the prediction error curve)
    N = 3
    x = time
    y = data[:,5,2] # 6,2 -> PIG
    y = ap.referenced(y, to='mean')
    y_pred, lasso = ap.lasso_cv(x, y, cv=10, max_deg=N, max_iter=1e3, return_model=True)
    mse = lasso.mse_path_.mean(axis=1)
    std = lasso.mse_path_.std(axis=1, ddof=1) / np.sqrt(10)
    #plt.plot(np.log(lasso.alphas_), mse)
    plt.errorbar(np.log(lasso.alphas_), mse, yerr=std)
    plt.vlines(np.log(lasso.alpha_), ymin=mse.min(), ymax=mse.max(), color='r')
Beispiel #8
0
def main():

    fname_in = sys.argv[1] 

    din = GetData(fname_in, 'a')
    satname = din.satname
    time = change_day(din.time, 15)      # change all days (e.g. 14,15,16,17) to 15
    ts = getattr(din, VAR_TO_CALIBRATE)
    err = din.dh_error
    n_ad = din.n_ad
    n_da = din.n_da
    lon = din.lon
    lat = din.lat
    din.file.close()
    t = ap.num2year(time)

    if SUBSET: # get subset
        ts, lon2, lat2 = ap.get_subset(ap.amundsen, ts, lon, lat)
        err, lon2, lat2 = ap.get_subset(ap.amundsen, err, lon, lat)
        n_ad, lon2, lat2 = ap.get_subset(ap.amundsen, n_ad, lon, lat)
        n_da, lon2, lat2 = ap.get_subset(ap.amundsen, n_da, lon, lat)
        lon, lat = lon2, lat2

    xx, yy = np.meshgrid(lon, lat)
    nt, ny, nx = ts.shape
    offset_12 = np.full((ny,nx), np.nan)
    offset_23 = np.full((ny,nx), np.nan)

    print 'cross-calibrating time series:', VAR_TO_CALIBRATE

    isfirst = True

    if SAT_NAMES is None:
        satnames = np.unique(din.satname)

    # iterate over every grid cell (all times)
    no_overlap_12 = 0
    no_overlap_23 = 0
    for i in xrange(ny):
        for j in xrange(nx):

            if 0:
                i, j = ap.find_nearest2(xx, yy, (LON,LAT))
                i -= 0
                j += 0

            print 'grid-cell:', i, j

            ts_ij = ts[:,i,j]
            if np.isnan(ts_ij).all(): continue

            # get all time series (all sats) in one df (per grid-cell)
            var = create_df_with_sats(time, ts_ij, satname, SAT_NAMES)

            if DETREND:
                var = var.apply(detrend)

            if FILTER:
                var = var.apply(ap.hp_filt, lamb=7, nan=True)

            if PLOT_TS and (var.count().sum() > 10):
                print 'grid-cell:', i, j
                var.plot(linewidth=3, figsize=(9, 3), legend=False)
                plt.title('Elevation change, dh  (lon=%.2f, lat=%.2f)' % (xx[i,j], yy[i,j]))
                plt.ylabel('m')
                plt.show()

            # compute offset (if ts overlap)
            #---------------------------------------------------
            x = pd.notnull(var)
            overlap_12 = x['ers1'] & x['ers2']
            overlap_23 = x['ers2'] & x['envi']

            if np.sometrue(overlap_12):
                if SAT_BIAS:
                    s1 = var['ers1'][overlap_12]
                    s2 = var['ers2'][overlap_12]
                    if LINEAR_FIT:
                        # using linear fit
                        s1 = s1[s1.notnull() & s2.notnull()]
                        s2 = s2[s1.notnull() & s2.notnull()]
                        if len(s1) > 1 and len(s2) > 1:
                            s1.index, s1[:] = ap.linear_fit(ap.date2year(s1.index), s1.values)
                            s2.index, s2[:] = ap.linear_fit(ap.date2year(s2.index), s2.values)
                            offset = (s1.values[-1] - s1.values[0]) - (s2.values[-1] - s2.values[0])
                        else:
                            pass
                    else:
                        # using absolute values
                        s1 = ap.referenced(s1, to='first')
                        s2 = ap.referenced(s2, to='first')
                        s1[0], s2[0] = np.nan, np.nan # remove first values
                        offset = np.nanmean(s1 - s2)

                    #pd.concat((s1, s2), axis=1).plot(marker='o')
                else:
                    offset = np.nanmean(var['ers1'] - var['ers2'])
                offset_12[i,j] = offset
            else:
                no_overlap_12 += 1

            if np.sometrue(overlap_23):
                if SAT_BIAS:
                    s2 = var['ers2'][overlap_23]
                    s3 = var['envi'][overlap_23]
                    if LINEAR_FIT:
                        s2 = s2[s2.notnull() & s3.notnull()]
                        s3 = s3[s2.notnull() & s3.notnull()]
                        if len(s2) > 1 and len(s3) > 1:
                            s2.index, s2[:] = ap.linear_fit(ap.date2year(s2.index), s2.values)
                            s3.index, s3[:] = ap.linear_fit(ap.date2year(s3.index), s3.values)
                            offset = (s2.values[-1] - s2.values[0]) - (s3.values[-1] - s3.values[0])
                        else:
                            pass
                    else:
                        s2 = ap.referenced(s2, to='first')
                        s3 = ap.referenced(s3, to='first')
                        s2[0], s3[0] = np.nan, np.nan
                        offset = np.nanmean(s2 - s3)
                    #pd.concat((s2, s3), axis=1).plot(marker='o')
                    #plt.show()
                else:
                    offset = np.nanmean(var['ers2'] - var['envi'])
                offset_23[i,j] = offset 
            else:
                no_overlap_23 += 1

            #---------------------------------------------------

    mean_offset_12 = np.nanmean(offset_12)
    median_offset_12 = np.nanmedian(offset_12)
    mean_offset_23 = np.nanmean(offset_23)
    median_offset_23 = np.nanmedian(offset_23)

    if SAVE_TO_FILE:
        fout = tb.open_file(FNAME_OUT, 'w')
        fout.create_array('/', 'lon', lon)
        fout.create_array('/', 'lat', lat)
        fout.create_array('/', 'offset_12', offset_12)
        fout.create_array('/', 'offset_23', offset_23)
        fout.close()

    if PLOT:
        plt.figure()
        plt.subplot(211)
        offset_12 = ap.median_filt(offset_12, 3, 3)
        plt.imshow(offset_12, origin='lower', interpolation='nearest', vmin=-.5, vmax=.5)
        plt.title('ERS1-ERS2')
        plt.colorbar(shrink=0.8)
        plt.subplot(212)
        offset_23 = ap.median_filt(offset_23, 3, 3)
        plt.imshow(offset_23, origin='lower', interpolation='nearest', vmin=-.5, vmax=.5)
        plt.title('ERS2-Envisat')
        #plt.colorbar(shrink=0.3, orientation='h')
        plt.colorbar(shrink=0.8)
        plt.figure()
        plt.subplot(121)
        o12 = offset_12[~np.isnan(offset_12)]
        plt.hist(o12, bins=100)
        plt.title('ERS1-ERS2')
        ax = plt.gca()
        ap.intitle('mean/median = %.2f/%.2f m' % (mean_offset_12, median_offset_12), 
                    ax=ax, loc=2)
        plt.xlim(-1, 1)
        plt.subplot(122)
        o23 = offset_23[~np.isnan(offset_23)]
        plt.hist(o23, bins=100)
        plt.title('ERS2-Envisat')
        ax = plt.gca()
        ap.intitle('mean/median = %.2f/%.2f m' % (mean_offset_23, median_offset_23),
                    ax=ax, loc=2)
        plt.xlim(-1, 1)
        plt.show()

    print 'calibrated variable:', VAR_TO_CALIBRATE
    print 'no overlaps:', no_overlap_12, no_overlap_23
    print 'mean offset:', mean_offset_12, mean_offset_23
    print 'median offset:', median_offset_12, median_offset_23
    print 'out file ->', FNAME_OUT