if 1: # load area info df_temp = pd.read_csv('ice_shelf_area4.csv') df_area = df_temp['sampled_km2'] df_area.index = df_temp['ice_shelf'] if 1: time, d = ap.time_filt(time, d, from_time=1994, to_time=2013) #time, e = time_filt(time, e, from_time=1992, to_time=20013) # area-average #--------------------------------------------------------------------- df = pd.DataFrame(index=time) df2 = pd.DataFrame(index=time) for k, s in zip(names, shelves): shelf, x, y = ap.get_subset(s, d, lon, lat) #error, x, y = ap.get_subset(s, e, lon, lat) A = ap.get_area_cells(shelf[10], x, y) ts, _ = ap.area_weighted_mean(shelf, A) #ts2, _ = ap.area_weighted_mean(error, A) df[k] = ts #df2[k] = ts2 if 0: print k plt.imshow(shelf[10], extent=(x.min(), x.max(), y.min(), y.max()), origin='lower', interpolation='nearest', aspect='auto') plt.show()
if 1: # load area info df_temp = pd.read_csv('ice_shelf_area4.csv') df_area = df_temp['sampled_km2'] df_area.index = df_temp['ice_shelf'] if 1: time, d = ap.time_filt(time, d, from_time=1994, to_time=2013) #time, e = time_filt(time, e, from_time=1992, to_time=20013) # area-average #--------------------------------------------------------------------- df = pd.DataFrame(index=time) df2 = pd.DataFrame(index=time) for k, s in zip(names, shelves): shelf, x, y = ap.get_subset(s, d, lon, lat) #error, x, y = ap.get_subset(s, e, lon, lat) A = ap.get_area_cells(shelf[10], x, y) ts, _ = ap.area_weighted_mean(shelf, A) #ts2, _ = ap.area_weighted_mean(error, A) df[k] = ts #df2[k] = ts2 if 0: print k plt.imshow(shelf[10], extent=(x.min(), x.max(), y.min(), y.max()), origin='lower', interpolation='nearest', aspect='auto') plt.show() # volume #---------------------------------------------------------------------
try: time = ap.num2year(fin.root.time[:]) except: time = fin.root.time[:] lon = fin.root.lon[:] lat = fin.root.lat[:] d = fin.root.dh_mean_mixed_const_xcal[:] #d = fin.root.dg_mean_xcal[:] #e = fin.root.dh_error_xcal[:] #d = fin.root.n_ad_xcal[:] nz, ny, nx = d.shape dt = ap.year2date(time) if 0: reg = ap.west d, lon, lat = ap.get_subset(reg, d, lon, lat) plt.figure() plt.imshow(d[10], extent=(lon.min(), lon.max(), lat.min(), lat.max()), origin='lower', interpolation='nearest', aspect='auto') plt.grid(True) plt.show() sys.exit() if 1: time, d = ap.time_filt(time, d, from_time=1994, to_time=2013) #time, e = time_filt(time, e, from_time=1992, to_time=20013) # area-average time series
try: time = ap.num2year(fin.root.time[:]) except: time = fin.root.time[:] lon = fin.root.lon[:] lat = fin.root.lat[:] d = fin.root.dh_mean_mixed_const_xcal[:] #d = fin.root.dg_mean_xcal[:] #e = fin.root.dh_error_xcal[:] #d = fin.root.n_ad_xcal[:] nz, ny, nx = d.shape dt = ap.year2date(time) if 0: reg = (207, 216, -78, -76) d, lon, lat = ap.get_subset(reg, d, lon, lat) plt.imshow(d[10], extent=(lon.min(), lon.max(), lat.min(), lat.max()), origin='lower', interpolation='nearest', aspect='auto') plt.grid(True) plt.show() sys.exit() if 1: time, d = ap.time_filt(time, d, from_time=1994, to_time=2013) #time, e = time_filt(time, e, from_time=1992, to_time=20013) # bin-area-average time series df = pd.DataFrame(index=time) df2 = pd.DataFrame(index=time) for k, s in zip(names, shelves): shelf, x, y = ap.get_subset(s, d, lon, lat)
def main(): fname_in = sys.argv[1] din = GetData(fname_in, 'a') satname = din.satname time = change_day(din.time, 15) # change all days (e.g. 14,15,16,17) to 15 ts = getattr(din, VAR_TO_CALIBRATE) err = din.dh_error n_ad = din.n_ad n_da = din.n_da lon = din.lon lat = din.lat din.file.close() t = ap.num2year(time) if SUBSET: # get subset ts, lon2, lat2 = ap.get_subset(ap.amundsen, ts, lon, lat) err, lon2, lat2 = ap.get_subset(ap.amundsen, err, lon, lat) n_ad, lon2, lat2 = ap.get_subset(ap.amundsen, n_ad, lon, lat) n_da, lon2, lat2 = ap.get_subset(ap.amundsen, n_da, lon, lat) lon, lat = lon2, lat2 xx, yy = np.meshgrid(lon, lat) nt, ny, nx = ts.shape offset_12 = np.full((ny, nx), np.nan) offset_23 = np.full((ny, nx), np.nan) print 'cross-calibrating time series:', VAR_TO_CALIBRATE isfirst = True if SAT_NAMES is None: satnames = np.unique(din.satname) # iterate over every grid cell (all times) no_overlap_12 = 0 no_overlap_23 = 0 for i in xrange(ny): for j in xrange(nx): if 0: i, j = ap.find_nearest2(xx, yy, (LON, LAT)) i -= 0 j += 0 print 'grid-cell:', i, j ts_ij = ts[:, i, j] if np.isnan(ts_ij).all(): continue # get all time series (all sats) in one df (per grid-cell) var = create_df_with_sats(time, ts_ij, satname, SAT_NAMES) if DETREND: var = var.apply(detrend) if FILTER: var = var.apply(ap.hp_filt, lamb=7, nan=True) if PLOT_TS and (var.count().sum() > 10): print 'grid-cell:', i, j var.plot(linewidth=3, figsize=(9, 3), legend=False) plt.title('Elevation change, dh (lon=%.2f, lat=%.2f)' % (xx[i, j], yy[i, j])) plt.ylabel('m') plt.show() # compute offset (if ts overlap) #--------------------------------------------------- x = pd.notnull(var) overlap_12 = x['ers1'] & x['ers2'] overlap_23 = x['ers2'] & x['envi'] if np.sometrue(overlap_12): if SAT_BIAS: s1 = var['ers1'][overlap_12] s2 = var['ers2'][overlap_12] if LINEAR_FIT: # using linear fit s1 = s1[s1.notnull() & s2.notnull()] s2 = s2[s1.notnull() & s2.notnull()] if len(s1) > 1 and len(s2) > 1: s1.index, s1[:] = ap.linear_fit( ap.date2year(s1.index), s1.values) s2.index, s2[:] = ap.linear_fit( ap.date2year(s2.index), s2.values) offset = (s1.values[-1] - s1.values[0]) - ( s2.values[-1] - s2.values[0]) else: pass else: # using absolute values s1 = ap.referenced(s1, to='first') s2 = ap.referenced(s2, to='first') s1[0], s2[0] = np.nan, np.nan # remove first values offset = np.nanmean(s1 - s2) #pd.concat((s1, s2), axis=1).plot(marker='o') else: offset = np.nanmean(var['ers1'] - var['ers2']) offset_12[i, j] = offset else: no_overlap_12 += 1 if np.sometrue(overlap_23): if SAT_BIAS: s2 = var['ers2'][overlap_23] s3 = var['envi'][overlap_23] if LINEAR_FIT: s2 = s2[s2.notnull() & s3.notnull()] s3 = s3[s2.notnull() & s3.notnull()] if len(s2) > 1 and len(s3) > 1: s2.index, s2[:] = ap.linear_fit( ap.date2year(s2.index), s2.values) s3.index, s3[:] = ap.linear_fit( ap.date2year(s3.index), s3.values) offset = (s2.values[-1] - s2.values[0]) - ( s3.values[-1] - s3.values[0]) else: pass else: s2 = ap.referenced(s2, to='first') s3 = ap.referenced(s3, to='first') s2[0], s3[0] = np.nan, np.nan offset = np.nanmean(s2 - s3) #pd.concat((s2, s3), axis=1).plot(marker='o') #plt.show() else: offset = np.nanmean(var['ers2'] - var['envi']) offset_23[i, j] = offset else: no_overlap_23 += 1 #--------------------------------------------------- mean_offset_12 = np.nanmean(offset_12) median_offset_12 = np.nanmedian(offset_12) mean_offset_23 = np.nanmean(offset_23) median_offset_23 = np.nanmedian(offset_23) if SAVE_TO_FILE: fout = tb.open_file(FNAME_OUT, 'w') fout.create_array('/', 'lon', lon) fout.create_array('/', 'lat', lat) fout.create_array('/', 'offset_12', offset_12) fout.create_array('/', 'offset_23', offset_23) fout.close() if PLOT: plt.figure() plt.subplot(211) offset_12 = ap.median_filt(offset_12, 3, 3) plt.imshow(offset_12, origin='lower', interpolation='nearest', vmin=-.5, vmax=.5) plt.title('ERS1-ERS2') plt.colorbar(shrink=0.8) plt.subplot(212) offset_23 = ap.median_filt(offset_23, 3, 3) plt.imshow(offset_23, origin='lower', interpolation='nearest', vmin=-.5, vmax=.5) plt.title('ERS2-Envisat') #plt.colorbar(shrink=0.3, orientation='h') plt.colorbar(shrink=0.8) plt.figure() plt.subplot(121) o12 = offset_12[~np.isnan(offset_12)] plt.hist(o12, bins=100) plt.title('ERS1-ERS2') ax = plt.gca() ap.intitle('mean/median = %.2f/%.2f m' % (mean_offset_12, median_offset_12), ax=ax, loc=2) plt.xlim(-1, 1) plt.subplot(122) o23 = offset_23[~np.isnan(offset_23)] plt.hist(o23, bins=100) plt.title('ERS2-Envisat') ax = plt.gca() ap.intitle('mean/median = %.2f/%.2f m' % (mean_offset_23, median_offset_23), ax=ax, loc=2) plt.xlim(-1, 1) plt.show() print 'calibrated variable:', VAR_TO_CALIBRATE print 'no overlaps:', no_overlap_12, no_overlap_23 print 'mean offset:', mean_offset_12, mean_offset_23 print 'median offset:', median_offset_12, median_offset_23 print 'out file ->', FNAME_OUT
print 'loading data...' fin = tb.openFile(DIR + FILE_IN) try: time = ap.num2year(fin.root.time[:]) except: time = fin.root.time[:] dt = ap.year2date(time) lon = fin.root.lon[:] lat = fin.root.lat[:] data = fin.root.dh_mean_mixed_const_xcal[:] nz, ny, nx = data.shape if 0: # subset (for testing!) region = ap.larsenc data, lon, lat = ap.get_subset(region, data, lon, lat) nt, ny, nx = data.shape # i,j,k = t,y,x if 1: # load mask print 'loading mask...' f = tb.open_file(FILE_MSK, 'r') x_msk = f.root.x[:] y_msk = f.root.y[:] msk = f.root.mask[:] f.close() print 'done' if 1: # 2d -> 1d, x/y -> lon/lat x_msk, y_msk = np.meshgrid(x_msk, y_msk) # 1d -> 2d x_msk, y_msk = x_msk.ravel(), y_msk.ravel() # 2d -> 1d msk = msk.ravel()
print 'loading data...' fin = tb.open_file(DIR + FILE_IN) try: time = ap.num2year(fin.root.time[:]) except: time = fin.root.time[:] lon = fin.root.lon[:] lat = fin.root.lat[:] data = fin.root.dh_mean_mixed_const_xcal[:] nz, ny, nx = data.shape if 0: # subset print 'subsetting...' region = ap.dotson data, _, _ = ap.get_subset(region, data, lon, lat) nt, ny, nx = data.shape # i,j,k = t,y,x #------------------------------------------------------ if 0: # plot alphas and MSEs (the prediction error curve) N = 3 x = time y = data[:,5,2] # 6,2 -> PIG y = ap.referenced(y, to='mean') y_pred, lasso = ap.lasso_cv(x, y, cv=10, max_deg=N, max_iter=1e3, return_model=True) mse = lasso.mse_path_.mean(axis=1) std = lasso.mse_path_.std(axis=1, ddof=1) / np.sqrt(10) #plt.plot(np.log(lasso.alphas_), mse) plt.errorbar(np.log(lasso.alphas_), mse, yerr=std) plt.vlines(np.log(lasso.alpha_), ymin=mse.min(), ymax=mse.max(), color='r')
def main(): fname_in = sys.argv[1] din = GetData(fname_in, 'a') satname = din.satname time = change_day(din.time, 15) # change all days (e.g. 14,15,16,17) to 15 ts = getattr(din, VAR_TO_CALIBRATE) err = din.dh_error n_ad = din.n_ad n_da = din.n_da lon = din.lon lat = din.lat din.file.close() t = ap.num2year(time) if SUBSET: # get subset ts, lon2, lat2 = ap.get_subset(ap.amundsen, ts, lon, lat) err, lon2, lat2 = ap.get_subset(ap.amundsen, err, lon, lat) n_ad, lon2, lat2 = ap.get_subset(ap.amundsen, n_ad, lon, lat) n_da, lon2, lat2 = ap.get_subset(ap.amundsen, n_da, lon, lat) lon, lat = lon2, lat2 xx, yy = np.meshgrid(lon, lat) nt, ny, nx = ts.shape offset_12 = np.full((ny,nx), np.nan) offset_23 = np.full((ny,nx), np.nan) print 'cross-calibrating time series:', VAR_TO_CALIBRATE isfirst = True if SAT_NAMES is None: satnames = np.unique(din.satname) # iterate over every grid cell (all times) no_overlap_12 = 0 no_overlap_23 = 0 for i in xrange(ny): for j in xrange(nx): if 0: i, j = ap.find_nearest2(xx, yy, (LON,LAT)) i -= 0 j += 0 print 'grid-cell:', i, j ts_ij = ts[:,i,j] if np.isnan(ts_ij).all(): continue # get all time series (all sats) in one df (per grid-cell) var = create_df_with_sats(time, ts_ij, satname, SAT_NAMES) if DETREND: var = var.apply(detrend) if FILTER: var = var.apply(ap.hp_filt, lamb=7, nan=True) if PLOT_TS and (var.count().sum() > 10): print 'grid-cell:', i, j var.plot(linewidth=3, figsize=(9, 3), legend=False) plt.title('Elevation change, dh (lon=%.2f, lat=%.2f)' % (xx[i,j], yy[i,j])) plt.ylabel('m') plt.show() # compute offset (if ts overlap) #--------------------------------------------------- x = pd.notnull(var) overlap_12 = x['ers1'] & x['ers2'] overlap_23 = x['ers2'] & x['envi'] if np.sometrue(overlap_12): if SAT_BIAS: s1 = var['ers1'][overlap_12] s2 = var['ers2'][overlap_12] if LINEAR_FIT: # using linear fit s1 = s1[s1.notnull() & s2.notnull()] s2 = s2[s1.notnull() & s2.notnull()] if len(s1) > 1 and len(s2) > 1: s1.index, s1[:] = ap.linear_fit(ap.date2year(s1.index), s1.values) s2.index, s2[:] = ap.linear_fit(ap.date2year(s2.index), s2.values) offset = (s1.values[-1] - s1.values[0]) - (s2.values[-1] - s2.values[0]) else: pass else: # using absolute values s1 = ap.referenced(s1, to='first') s2 = ap.referenced(s2, to='first') s1[0], s2[0] = np.nan, np.nan # remove first values offset = np.nanmean(s1 - s2) #pd.concat((s1, s2), axis=1).plot(marker='o') else: offset = np.nanmean(var['ers1'] - var['ers2']) offset_12[i,j] = offset else: no_overlap_12 += 1 if np.sometrue(overlap_23): if SAT_BIAS: s2 = var['ers2'][overlap_23] s3 = var['envi'][overlap_23] if LINEAR_FIT: s2 = s2[s2.notnull() & s3.notnull()] s3 = s3[s2.notnull() & s3.notnull()] if len(s2) > 1 and len(s3) > 1: s2.index, s2[:] = ap.linear_fit(ap.date2year(s2.index), s2.values) s3.index, s3[:] = ap.linear_fit(ap.date2year(s3.index), s3.values) offset = (s2.values[-1] - s2.values[0]) - (s3.values[-1] - s3.values[0]) else: pass else: s2 = ap.referenced(s2, to='first') s3 = ap.referenced(s3, to='first') s2[0], s3[0] = np.nan, np.nan offset = np.nanmean(s2 - s3) #pd.concat((s2, s3), axis=1).plot(marker='o') #plt.show() else: offset = np.nanmean(var['ers2'] - var['envi']) offset_23[i,j] = offset else: no_overlap_23 += 1 #--------------------------------------------------- mean_offset_12 = np.nanmean(offset_12) median_offset_12 = np.nanmedian(offset_12) mean_offset_23 = np.nanmean(offset_23) median_offset_23 = np.nanmedian(offset_23) if SAVE_TO_FILE: fout = tb.open_file(FNAME_OUT, 'w') fout.create_array('/', 'lon', lon) fout.create_array('/', 'lat', lat) fout.create_array('/', 'offset_12', offset_12) fout.create_array('/', 'offset_23', offset_23) fout.close() if PLOT: plt.figure() plt.subplot(211) offset_12 = ap.median_filt(offset_12, 3, 3) plt.imshow(offset_12, origin='lower', interpolation='nearest', vmin=-.5, vmax=.5) plt.title('ERS1-ERS2') plt.colorbar(shrink=0.8) plt.subplot(212) offset_23 = ap.median_filt(offset_23, 3, 3) plt.imshow(offset_23, origin='lower', interpolation='nearest', vmin=-.5, vmax=.5) plt.title('ERS2-Envisat') #plt.colorbar(shrink=0.3, orientation='h') plt.colorbar(shrink=0.8) plt.figure() plt.subplot(121) o12 = offset_12[~np.isnan(offset_12)] plt.hist(o12, bins=100) plt.title('ERS1-ERS2') ax = plt.gca() ap.intitle('mean/median = %.2f/%.2f m' % (mean_offset_12, median_offset_12), ax=ax, loc=2) plt.xlim(-1, 1) plt.subplot(122) o23 = offset_23[~np.isnan(offset_23)] plt.hist(o23, bins=100) plt.title('ERS2-Envisat') ax = plt.gca() ap.intitle('mean/median = %.2f/%.2f m' % (mean_offset_23, median_offset_23), ax=ax, loc=2) plt.xlim(-1, 1) plt.show() print 'calibrated variable:', VAR_TO_CALIBRATE print 'no overlaps:', no_overlap_12, no_overlap_23 print 'mean offset:', mean_offset_12, mean_offset_23 print 'median offset:', median_offset_12, median_offset_23 print 'out file ->', FNAME_OUT