Beispiel #1
0
def get_subset(region, arr, x, y):
    """Get subset from a 2d/3d-array.

    Parameters
    ----------
    region : (left, right, bottom, top)
    arr : 2d/3d array to subset
    x, y : 1d arrays with coordinates of arr

    Returns
    -------
    arr_sub, x_sub, y_sub : a subset of 'arr'

    """
    arr2, x2, y2 = arr.copy(), x.copy(), y.copy()  # important!
    l, r, b, t = region
    x2 = lon_180_360(x2, region)
    j, = np.where((l <= x2) & (x2 <= r))
    i, = np.where((b <= y2) & (y2 <= t))
    if len(j) == 0 or len(i) == 0:
        raise ValueError('region given does not agree with coordinates!')
    j1, j2 = j.min(), j.max()
    i1, i2 = i.min(), i.max()
    return arr2[...,i1:i2,j1:j2], x2[j1:j2], y2[i1:i2]
Beispiel #2
0
def main(args):

    # input args
    #---------------------------------------------------------------------
    if len(args.files) > 1:
        files = args.files
    else:
        files = glob(args.files[0])  # using 'glob'

    fname_out = args.fname_out
    region = args.region
    x_range = region[:2]
    y_range = region[2:]
    dx = args.delta[0]
    dy = args.delta[1]
    nsect = args.nsectors
    suffix = args.suffix

    if nsect > 1:
        subdom = get_sub_domains(x_range[0], x_range[1], nsect)

    if len(files) > 1:
        files.sort(key=lambda s: re.findall('\d\d\d\d\d\d+', s))

    print 'processing %d files...' % len(files)

    for fname in files:

        if nsect > 1:
            sectnum = get_sect_num(fname)
            x_range = subdom[sectnum]

        d = get_data(fname)
        d['satname'], d['time1'], d['time2'] = get_info(fname)

        # pre-processing
        #-----------------------------------------------------------------

        d['lon'] = alt.lon_180_360(d['lon'], region=region)

        # filter data -> select modes and "good" data points
        d = filter_data(d, ice_only=ICE_ONLY)

        # go to next file
        if d is None:
            print 'No data left after filtering!\nFile:', fname
            continue

        # apply tide and load corrections
        """
        The sign of the correction is the same (subtract), but the phase of the
        load tide is ~180 degrees off the ocean tide. E.g., if the ocean tide at
        (t,x,y) is +1.0 m, the load tide is probably -0.03 m (more or less), so
        the correction equation would be:
        
        tide_free = measured - (+1.0) - (-0.03) = measured - (+0.97)
        """
        d['h1'] -= d['tide1']
        d['h2'] -= d['tide2']

        # digitize lons and lats (create the grid)
        lon, lat, j_bins, i_bins, x_edges, y_edges, nx, ny = \
            digitize(d['lon'], d['lat'], x_range, y_range, dx, dy)

        h1, h2 = d['h1'], d['h2']
        g1, g2 = d['g1'], d['g2']
        ftrk1, ftrk2 = d['ftrk1'], d['ftrk2']

        # Output grids
        g = OutGrids(ny, nx)

        # calculations per grid cell
        #-----------------------------------------------------------------

        for i in xrange(ny):
            for j in xrange(nx):
                '''
                # data corresponding to the 'i,j' grid cell
                i_cell, = np.where((x_edges[j] <= d['lon']) & \
                                   (d['lon'] < x_edges[j+1]) & \
                                   (y_edges[i] <= d['lat']) & \
                                   (d['lat'] < y_edges[i+1]))
                '''
                # indices of data corresponding to the 'i,j' grid cell
                i_cell, = np.where((j_bins == j + 1) & (i_bins == i + 1))

                if len(i_cell) == 0: continue

                # xovers per cell
                dh = h2[i_cell] - h1[i_cell]  # always t2 - t1 !
                dg = g2[i_cell] - g1[i_cell]

                # separate in asc/des-des/asc
                i_ad, i_da = where_ad_da(ftrk1[i_cell], ftrk2[i_cell])
                dh_ad = dh[i_ad]
                dh_da = dh[i_da]
                dg_ad = dg[i_ad]
                dg_da = dg[i_da]

                # filter absolute values
                i_ad = abs_editing(dh_ad, absval=ABS_VAL, return_index=True)
                i_da = abs_editing(dh_da, absval=ABS_VAL, return_index=True)
                dh_ad = dh_ad[i_ad]
                dh_da = dh_da[i_da]
                dg_ad = dg_ad[i_ad]
                dg_da = dg_da[i_da]

                # filter standard deviation
                i_ad = std_editing(dh_ad,
                                   nsd=NUM_STD,
                                   iterative=ITERATIVE,
                                   return_index=True)
                i_da = std_editing(dh_da,
                                   nsd=NUM_STD,
                                   iterative=ITERATIVE,
                                   return_index=True)
                if len(i_ad) == 0 and len(i_da) == 0:
                    pass
                else:
                    dh_ad = dh_ad[i_ad]
                    dh_da = dh_da[i_da]
                    dg_ad = dg_ad[i_ad]
                    dg_da = dg_da[i_da]

                # mean values
                g.dh_mean[i, j] = compute_weighted_mean(dh_ad,
                                                        dh_da,
                                                        useall=USEALL,
                                                        median=MEDIAN)
                g.dh_error[i, j] = compute_weighted_error(dh_ad,
                                                          dh_da,
                                                          useall=USEALL)
                g.dh_error2[i, j] = compute_wingham_error(dh_ad,
                                                          dh_da,
                                                          useall=USEALL)
                g.dg_mean[i, j] = compute_weighted_mean(dg_ad,
                                                        dg_da,
                                                        useall=USEALL,
                                                        median=MEDIAN)
                g.dg_error[i, j] = compute_weighted_error(dg_ad,
                                                          dg_da,
                                                          useall=USEALL)
                g.dg_error2[i, j] = compute_wingham_error(dg_ad,
                                                          dg_da,
                                                          useall=USEALL)
                g.n_ad[i, j], g.n_da[i, j] = compute_num_obs(dh_ad,
                                                             dh_da,
                                                             useall=USEALL)

                # gaussian smooth
                if PLOT and GAUSS_SMOOTH and not SAVE_TO_FILE:
                    g.dh_mean = gaussian_filter(g.dh_mean, GAUSS_WIDTH)
                    g.dg_mean = gaussian_filter(g.dg_mean, GAUSS_WIDTH)

            # save the grids
            #-----------------------------------------------------------------

            if SAVE_TO_FILE:
                # save one set of grids per iteration (i.e., per file)
                fname_out = fname.replace('.h5', suffix)
                out = OutputContainers(fname_out, (1, ny, nx))
                out.lon[:] = lon
                out.lat[:] = lat
                out.x_edges[:] = x_edges
                out.y_edges[:] = y_edges
                out.time1[:] = d['time1']
                out.time2[:] = d['time2']
                out.dh_mean[:] = g.dh_mean
                out.dh_error[:] = g.dh_error
                out.dh_error2[:] = g.dh_error2
                out.dg_mean[:] = g.dg_mean
                out.dg_error[:] = g.dg_error
                out.dg_error2[:] = g.dg_error2
                out.n_ad[:] = g.n_ad
                out.n_da[:] = g.n_da
                out.file.flush()
                out.file.close()

        try:
            print_info(x_edges,
                       y_edges,
                       lon,
                       lat,
                       dx,
                       dy,
                       1,
                       g.n_ad,
                       g.n_da,
                       source='None')
        except:
            pass

        if PLOT:
            try:
                plt.plot(d['lon'], d['lat'], '.')
                plot_grids(x_edges, y_edges, g.dh_mean, g.dh_error, g.n_ad,
                           g.n_da)
                plt.show()
            except:
                print 'no data to plot!'

        if SAVE_TO_FILE:
            print 'file out -->', fname_out, '\n'
Beispiel #3
0
def main(args):

    # input args
    #---------------------------------------------------------------------
    if len(args.files) > 1:
        files = args.files
    else:
        files = glob(args.files[0])  # using 'glob'

    fname_out = args.fname_out
    region = args.region
    x_range = region[:2]
    y_range = region[2:]
    dx = args.delta[0]
    dy = args.delta[1]
    nsect = args.nsectors
    suffix = args.suffix

    if nsect > 1:
        subdom = get_sub_domains(x_range[0], x_range[1], nsect)

    if len(files) > 1:
        files.sort(key=lambda s: re.findall('\d\d\d\d\d\d+', s))

    print 'processing %d files...' % len(files)

    for fname in files:

        if nsect > 1:
            sectnum = get_sect_num(fname) 
            x_range = subdom[sectnum]

        d = get_data(fname)
        d['satname'], d['time1'], d['time2'] = get_info(fname)

        # pre-processing
        #-----------------------------------------------------------------

        d['lon'] = alt.lon_180_360(d['lon'], region=region)

        # filter data -> select modes and "good" data points
        d = filter_data(d, ice_only=ICE_ONLY)

        # go to next file
        if d is None:   
            print 'No data left after filtering!\nFile:', fname
            continue

        # apply tide and load corrections
        """
        The sign of the correction is the same (subtract), but the phase of the
        load tide is ~180 degrees off the ocean tide. E.g., if the ocean tide at
        (t,x,y) is +1.0 m, the load tide is probably -0.03 m (more or less), so
        the correction equation would be:
        
        tide_free = measured - (+1.0) - (-0.03) = measured - (+0.97)
        """
        d['h1'] -= d['tide1']
        d['h2'] -= d['tide2']

        # digitize lons and lats (create the grid)
        lon, lat, j_bins, i_bins, x_edges, y_edges, nx, ny = \
            digitize(d['lon'], d['lat'], x_range, y_range, dx, dy)

        h1, h2 = d['h1'], d['h2']
        g1, g2 = d['g1'], d['g2']
        ftrk1, ftrk2 = d['ftrk1'], d['ftrk2']

        # Output grids 
        g = OutGrids(ny, nx)

        # calculations per grid cell
        #-----------------------------------------------------------------

        for i in xrange(ny):
            for j in xrange(nx):
                '''
                # data corresponding to the 'i,j' grid cell
                i_cell, = np.where((x_edges[j] <= d['lon']) & \
                                   (d['lon'] < x_edges[j+1]) & \
                                   (y_edges[i] <= d['lat']) & \
                                   (d['lat'] < y_edges[i+1]))
                '''
                # indices of data corresponding to the 'i,j' grid cell
                i_cell, = np.where((j_bins == j+1) & (i_bins == i+1))

                if len(i_cell) == 0: continue

                # xovers per cell 
                dh = h2[i_cell] - h1[i_cell]    # always t2 - t1 !
                dg = g2[i_cell] - g1[i_cell]

                # separate in asc/des-des/asc 
                i_ad, i_da = where_ad_da(ftrk1[i_cell], ftrk2[i_cell])
                dh_ad = dh[i_ad]
                dh_da = dh[i_da]
                dg_ad = dg[i_ad]
                dg_da = dg[i_da]

                # filter absolute values
                i_ad = abs_editing(dh_ad, absval=ABS_VAL, return_index=True)
                i_da = abs_editing(dh_da, absval=ABS_VAL, return_index=True)
                dh_ad = dh_ad[i_ad]
                dh_da = dh_da[i_da]
                dg_ad = dg_ad[i_ad]
                dg_da = dg_da[i_da]

                # filter standard deviation
                i_ad = std_editing(dh_ad, nsd=NUM_STD, iterative=ITERATIVE, return_index=True)
                i_da = std_editing(dh_da, nsd=NUM_STD, iterative=ITERATIVE, return_index=True)
                if len(i_ad) == 0 and len(i_da) == 0:
                    pass
                else:
                    dh_ad = dh_ad[i_ad]
                    dh_da = dh_da[i_da]
                    dg_ad = dg_ad[i_ad]
                    dg_da = dg_da[i_da]

                # mean values
                g.dh_mean[i,j] = compute_weighted_mean(dh_ad, dh_da, useall=USEALL, median=MEDIAN) 
                g.dh_error[i,j] = compute_weighted_error(dh_ad, dh_da, useall=USEALL) 
                g.dh_error2[i,j] = compute_wingham_error(dh_ad, dh_da, useall=USEALL) 
                g.dg_mean[i,j] = compute_weighted_mean(dg_ad, dg_da, useall=USEALL, median=MEDIAN) 
                g.dg_error[i,j] = compute_weighted_error(dg_ad, dg_da, useall=USEALL) 
                g.dg_error2[i,j] = compute_wingham_error(dg_ad, dg_da, useall=USEALL) 
                g.n_ad[i,j], g.n_da[i,j] = compute_num_obs(dh_ad, dh_da, useall=USEALL)

                # gaussian smooth
                if PLOT and GAUSS_SMOOTH and not SAVE_TO_FILE:
                    g.dh_mean = gaussian_filter(g.dh_mean, GAUSS_WIDTH)
                    g.dg_mean = gaussian_filter(g.dg_mean, GAUSS_WIDTH)

            # save the grids
            #-----------------------------------------------------------------

            if SAVE_TO_FILE:
                # save one set of grids per iteration (i.e., per file)
                fname_out = fname.replace('.h5', suffix)
                out = OutputContainers(fname_out, (1,ny,nx))
                out.lon[:] = lon
                out.lat[:] = lat
                out.x_edges[:] = x_edges
                out.y_edges[:] = y_edges
                out.time1[:] = d['time1']
                out.time2[:] = d['time2']
                out.dh_mean[:] = g.dh_mean
                out.dh_error[:] = g.dh_error
                out.dh_error2[:] = g.dh_error2
                out.dg_mean[:] = g.dg_mean
                out.dg_error[:] = g.dg_error
                out.dg_error2[:] = g.dg_error2
                out.n_ad[:] = g.n_ad
                out.n_da[:] = g.n_da
                out.file.flush()
                out.file.close()

        try:
            print_info(x_edges, y_edges, lon, lat, dx, dy, 1, g.n_ad, g.n_da, source='None')
        except:
            pass
        
        if PLOT:
            try:
                plt.plot(d['lon'], d['lat'], '.')
                plot_grids(x_edges, y_edges, g.dh_mean, g.dh_error, g.n_ad, g.n_da)
                plt.show()
            except:
                print 'no data to plot!'
        
        if SAVE_TO_FILE:
            print 'file out -->', fname_out, '\n'
Beispiel #4
0
print 'reading firn...'
f1 = nc.Dataset(FILE_FIRN)
d = f1.variables
h_firn = d['zs'] #[:]
t_firn = d['time'][:]   # years
lon_firn = d['lon'][:]  # 2d
lat_firn = d['lat'][:]  # 2d

# read altim
print 'reading altim...'
f2 = tb.openFile(FILE_ALTIM, 'a')
h_altim = f2.root.dh_mean_mixed_const_xcal[:-1,...]  # minus last to agree with firn ts
t_altim = ap.num2year(f2.root.time_xcal[:-1])  # years
lat_altim = f2.root.lat[:]      # 1d
lon_altim = f2.root.lon[:]      # 1d
lon_altim = ap.lon_180_360(lon_altim, inverse=True)

# get lon/lat only of complete (no gaps) altim ts
h_altim = h_altim.sum(axis=0)                    # 3d -> 2d
i_altim, j_altim = np.where(~np.isnan(h_altim))  # 2d indices
lonlat_altim = np.column_stack((lon_altim[j_altim], lat_altim[i_altim]))

# find nearest lon/lat in the firn model
i_firn, j_firn = ap.find_nearest2(lon_firn, lat_firn, lonlat_altim)

# find nearest altim times in the firn times
k_firn, = ap.find_nearest(t_firn, t_altim)

# new firn grid => same altim resolution with original firn time
nt, ny, nx = h_firn.shape[0], h_altim.shape[0], h_altim.shape[1]
h_firn_new = np.full((nt, ny, nx), np.nan, dtype='f8')
Beispiel #5
0
f1 = nc.Dataset(FILE_FIRN)
d = f1.variables
h_firn = d['zs']  #[:]
t_firn = d['time'][:]  # years
lon_firn = d['lon'][:]  # 2d
lat_firn = d['lat'][:]  # 2d

# read altim
print 'reading altim...'
f2 = tb.openFile(FILE_ALTIM, 'a')
h_altim = f2.root.dh_mean_mixed_const_xcal[:-1,
                                           ...]  # minus last to agree with firn ts
t_altim = ap.num2year(f2.root.time_xcal[:-1])  # years
lat_altim = f2.root.lat[:]  # 1d
lon_altim = f2.root.lon[:]  # 1d
lon_altim = ap.lon_180_360(lon_altim, inverse=True)

# get lon/lat only of complete (no gaps) altim ts
h_altim = h_altim.sum(axis=0)  # 3d -> 2d
i_altim, j_altim = np.where(~np.isnan(h_altim))  # 2d indices
lonlat_altim = np.column_stack((lon_altim[j_altim], lat_altim[i_altim]))

# find nearest lon/lat in the firn model
i_firn, j_firn = ap.find_nearest2(lon_firn, lat_firn, lonlat_altim)

# find nearest altim times in the firn times
k_firn, = ap.find_nearest(t_firn, t_altim)

# new firn grid => same altim resolution with original firn time
nt, ny, nx = h_firn.shape[0], h_altim.shape[0], h_altim.shape[1]
h_firn_new = np.full((nt, ny, nx), np.nan, dtype='f8')
Beispiel #6
0
if 1: # load mask
    print 'loading mask...'
    f = tb.open_file(FILE_MSK, 'r')
    x_msk = f.root.x[:]
    y_msk = f.root.y[:]
    msk = f.root.mask[:]
    f.close()
    print 'done'

if 1: # 2d -> 1d, x/y -> lon/lat
    x_msk, y_msk = np.meshgrid(x_msk, y_msk)    # 1d -> 2d
    x_msk, y_msk = x_msk.ravel(), y_msk.ravel() # 2d -> 1d
    msk = msk.ravel()
    lon_msk, lat_msk = ap.xy2ll(x_msk, y_msk, units='m')
    lon_msk = ap.lon_180_360(lon_msk)
    del x_msk, y_msk

lon_nodes, lat_nodes = ap.cell2node(lon, lat)
area = np.full(data[0].shape, np.nan)
cells_idx = []

# count number of mask cells falling into each data cell
for i in xrange(len(lat)):
    for j in xrange(len(lon)):
        i_cells, = np.where((lon_nodes[j] <= lon_msk) & \
                            (lon_msk <= lon_nodes[j+1]) & \
                            (lat_nodes[i] <= lat_msk) & \
                            (lat_msk <= lat_nodes[i+1]) & \
                            (msk == 4))  # 4 = ice shelf
        area[i,j] = len(i_cells)         # each mask cell is 1 km**2
Beispiel #7
0
d1 = f1.variables
firn = d1["zs"]
year1 = d1["time"][:]
lons1 = d1["lon"][:]  # 2d
lats1 = d1["lat"][:]  # 2d
ism = d1["ism"][:]
lsm = d1["lsm"][:]
dt1 = ap.year2date(year1)
# dt1 = year1

f2 = tb.openFile(FILE2)
elev = f2.root.elev[:]
time2 = f2.root.time[:]
lon2 = f2.root.lon[:]  # 1d
lat2 = f2.root.lat[:]  # 1d
lon2 = ap.lon_180_360(lon2, inverse=True)
lons2, lats2 = np.meshgrid(lon2, lat2)
points2 = np.column_stack((lons2.ravel(), lats2.ravel()))
# points2 = (lons2[6,4], lats2[6,4])
dt2 = ap.num2date(time2)
# dt2 = ap.num2year(time2)

"""
f3 = tb.openFile(FILE3)
d3 = f3.root.data[:]
y3, x3 = d3[:,0], d3[:,1]
x3 = ap.lon_180_360(x3, inverse=True)

f4 = tb.openFile(FILE4)
d4 = f4.root.data[:]
y4, x4 = d4[:,0], d4[:,1]