Beispiel #1
0
def _calc_weight_reg(x, y, weights):
    """Apply a linear regression (IDL function) to fit the hole phase and error."""
    reg = regress_noc(x, y, weights)
    sig = cov2cor(reg.cov)[1]
    hole_ph = reg.coeff
    hole_ph_err = sig * np.sqrt(reg.MSE)
    return hole_ph, hole_ph_err
Beispiel #2
0
def _normalize_all_obs(
    bs_quantities,
    v2_quantities,
    cvis_arr,
    cp_cov,
    bs_v2_cov,
    fluxes,
    index_mask,
    infos,
    expert_plot=False,
    save=False,
):
    """Normalize all observables by the appropriate factor proportional to
    the averaged fluxes and the number of holes."""
    bs_arr = bs_quantities["bs_arr"]
    v2_arr = v2_quantities["v2_arr"]

    v2 = v2_quantities["v2"]
    v2_cov = v2_quantities["v2_cov"]
    avar = v2_quantities["avar"]
    err_avar = v2_quantities["err_avar"]

    bs = bs_quantities["bs"]
    bs_cov = bs_quantities["bs_cov"]
    bs_var = bs_quantities["bs_var"]

    n_holes = index_mask.n_holes

    bs_arr_norm = bs_arr / np.mean(fluxes ** 3) * n_holes ** 3
    v2_arr_norm = v2_arr / np.mean(fluxes ** 2) * n_holes ** 2
    cvis_arr_norm = cvis_arr / np.mean(fluxes) * n_holes

    v2_norm = (v2 / np.mean(fluxes ** 2)) * n_holes ** 2
    v2_cov_norm = (v2_cov / np.mean(fluxes ** 4)) * n_holes ** 4

    bs_norm = bs / np.mean(fluxes ** 3) * n_holes ** 3

    avar_norm = avar / np.mean(fluxes ** 4) * n_holes ** 4
    err_avar_norm = err_avar / np.mean(fluxes ** 4) * n_holes ** 4

    try:
        cp_cov_norm = cp_cov / np.mean(fluxes ** 6) * n_holes ** 6
    except TypeError:
        cp_cov_norm = None

    bs_cov_norm = bs_cov / np.mean(fluxes ** 6) * n_holes ** 6
    bs_v2_cov_norm = np.real(bs_v2_cov / np.mean(fluxes ** 5) * n_holes ** 5)
    bs_var_norm = bs_var / np.mean(fluxes ** 6) * n_holes ** 6

    if expert_plot:
        plt.figure(figsize=(12, 6))
        plt.title("DIAGNOSTIC PLOTS - V2 - %s" % infos.target)
        plt.plot(v2_arr_norm[0], color="grey", alpha=0.2, label="V$^2$ dispersion")
        plt.plot(v2_arr_norm.T, color="grey", alpha=0.2)
        plt.plot(v2_norm, color="crimson", label="Raw V$^2$")
        plt.grid(alpha=0.2)
        plt.legend()
        plt.xlabel("# baselines")
        plt.ylabel("Raw visibilities")
        plt.tight_layout()

    # We compute the correlation matrix (to be used lated)
    v2_cor = cov2cor(v2_cov)[0]

    norm_quantities = {
        "bs_arr": bs_arr_norm,
        "v2_arr": v2_arr_norm,
        "cvis_arr": cvis_arr_norm,
        "bs": bs_norm,
        "v2_cov": v2_cov_norm,
        "bs_cov": bs_cov_norm,
        "avar": avar_norm,
        "err_avar": err_avar_norm,
        "cp_cov": cp_cov_norm,
        "bs_var": bs_var_norm,
        "bs_v2_cov": bs_v2_cov_norm,
        "v2_cor": v2_cor,
    }
    return v2_norm, norm_quantities
Beispiel #3
0
def _normalize_all_obs(bs_quantities, v2_quantities, cvis_arr, cp_cov,
                       bs_v2_cov, fluxes, index_mask, infos, expert_plot=False):
    """ Normalize all observables by the appropriate factor proportional to 
    the averaged fluxes and the number of holes."""
    bs_arr = bs_quantities['bs_arr']
    v2_arr = v2_quantities['v2_arr']

    v2 = v2_quantities['v2']
    v2_cov = v2_quantities['v2_cov']
    avar = v2_quantities['avar']
    err_avar = v2_quantities['err_avar']

    bs = bs_quantities['bs']
    bs_cov = bs_quantities['bs_cov']
    bs_var = bs_quantities['bs_var']

    n_holes = index_mask.n_holes

    bs_arr_norm = bs_arr / np.mean(fluxes ** 3) * n_holes ** 3
    v2_arr_norm = v2_arr / np.mean(fluxes ** 2) * n_holes ** 2
    cvis_arr_norm = cvis_arr / np.mean(fluxes) * n_holes

    v2_norm = (v2 / np.mean(fluxes ** 2)) * n_holes ** 2
    v2_cov_norm = (v2_cov / np.mean(fluxes ** 4)) * n_holes ** 4

    bs_norm = bs / np.mean(fluxes ** 3) * n_holes ** 3

    avar_norm = avar / np.mean(fluxes ** 4) * n_holes ** 4
    err_avar_norm = err_avar / np.mean(fluxes ** 4) * n_holes ** 4

    try:
        cp_cov_norm = cp_cov / np.mean(fluxes ** 6) * n_holes ** 6
    except TypeError:
        cp_cov_norm = None
    
    bs_cov_norm = bs_cov / np.mean(fluxes ** 6) * n_holes ** 6
    bs_v2_cov_norm = np.real(bs_v2_cov / np.mean(fluxes ** 5) * n_holes ** 5)
    bs_var_norm = bs_var / np.mean(fluxes ** 6) * n_holes ** 6

    if expert_plot:
        plt.figure(figsize=(5, 4))
        plt.title('DIAGNOSTIC PLOTS - V2 - %s' % infos.target)
        plt.plot(v2_arr_norm[0], color='grey', alpha=.2, label='V$^2$ dispersion')
        plt.plot(v2_arr_norm.T, color='grey', alpha=.2)
        plt.plot(v2_norm, color='crimson', label='Raw V$^2$')
        plt.grid(alpha=.2)
        plt.legend()
        plt.xlabel('# baselines')
        plt.ylabel('Raw visibilities')
        plt.tight_layout()
    
    # We compute the correlation matrix (to be used lated)
    v2_cor = cov2cor(v2_cov)[0]

    norm_quantities = {'bs_arr': bs_arr_norm, 'v2_arr': v2_arr_norm,
                       'cvis_arr': cvis_arr_norm, 'bs': bs_norm,
                       'v2_cov': v2_cov_norm, 'bs_cov': bs_cov_norm,
                       'avar': avar_norm, 'err_avar': err_avar_norm,
                       'cp_cov': cp_cov_norm, 'bs_var': bs_var_norm,
                       'bs_v2_cov': bs_v2_cov_norm, 'v2_cor': v2_cor
                       }
    return v2_norm, norm_quantities