Beispiel #1
0
def build_analysis_pipeline(analysis_context):
    """
    Define the function to create pipeline for parsing the log data.
    It has also to define an AtomizerFactory to instruct AMiner how to process incoming data streams to create log atoms from them.
    """
    # Build the parsing model:
    from aminer.parsing import AnyByteDataModelElement

    parsing_model = AnyByteDataModelElement('AnyByteDataModelElement')

    # Some generic imports.
    from aminer.analysis import AtomFilters

    # Create all global handler lists here and append the real handlers later on.
    # Use this filter to distribute all atoms to the analysis handlers.
    atom_filter = AtomFilters.SubhandlerFilter(None)

    from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler
    stream_printer_event_handler = StreamPrinterEventHandler(analysis_context)
    anomaly_event_handlers = [stream_printer_event_handler]

    # Now define the AtomizerFactory using the model. A simple line
    # based one is usually sufficient.
    from aminer.input import SimpleByteStreamLineAtomizerFactory
    analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory(
        parsing_model, [atom_filter], anomaly_event_handlers)

    # Just report all unparsed atoms to the event handlers.
    from aminer.input import SimpleUnparsedAtomHandler
    simple_unparsed_atom_handler = SimpleUnparsedAtomHandler(
        anomaly_event_handlers)
    atom_filter.add_handler(simple_unparsed_atom_handler,
                            stop_when_handled_flag=True)
    analysis_context.register_component(simple_unparsed_atom_handler,
                                        component_name="UnparsedHandler")

    from aminer.analysis import NewMatchPathDetector
    new_match_path_detector = NewMatchPathDetector(
        analysis_context.aminer_config,
        anomaly_event_handlers,
        auto_include_flag=True)
    analysis_context.register_component(new_match_path_detector,
                                        component_name="NewMatchPath")
    atom_filter.add_handler(new_match_path_detector)

    from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector
    new_match_path_value_detector = NewMatchPathValueDetector(
        analysis_context.aminer_config, ['/AnyByteDataModelElement'],
        anomaly_event_handlers,
        auto_include_flag=True)
    analysis_context.register_component(new_match_path_value_detector,
                                        component_name="NewMatchPathValue")
    atom_filter.add_handler(new_match_path_value_detector)
def build_analysis_pipeline(analysis_context):
    """Define the function to create pipeline for parsing the log
    data. It has also to define an AtomizerFactory to instruct AMiner
    how to process incoming data streams to create log atoms from
    them."""

    date_format_string = b'%Y-%m-%d %H:%M:%S'
    cron = b' cron['

    # Build the parsing model:

    service_children_disk_report = [
        FixedDataModelElement(
            'Space',
            b' Current Disk Data is: Filesystem     Type  Size  Used Avail Use%'
        ),
        DelimitedDataModelElement('Data', b'%'),
        AnyByteDataModelElement('Rest')
    ]

    service_children_login_details = [
        FixedDataModelElement('User', b'User '),
        DelimitedDataModelElement('Username', b' '),
        FixedWordlistDataModelElement('Status',
                                      [b' logged in', b' logged out']),
        OptionalMatchModelElement(
            'PastTime',
            SequenceModelElement('Time', [
                FixedDataModelElement('Blank', b' '),
                DecimalIntegerValueModelElement('Minutes'),
                FixedDataModelElement('Ago', b' minutes ago.')
            ]))
    ]

    service_children_cron_job = [
        DateTimeModelElement('DTM', date_format_string),
        FixedDataModelElement('UNameSpace1', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('UNameSpace2', b' '),
        DelimitedDataModelElement('User', b' '),
        FixedDataModelElement('Cron', cron),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Details', b']: Job `cron.daily` started.')
    ]

    service_children_random_time = [
        FixedDataModelElement('Space', b'Random: '),
        DecimalIntegerValueModelElement('Random')
    ]

    service_children_sensors = [
        SequenceModelElement('CPUTemp', [
            FixedDataModelElement('FixedTemp', b'CPU Temp: '),
            DecimalIntegerValueModelElement('Temp'),
            FixedDataModelElement('Degrees', b'\xc2\xb0C')
        ]),
        FixedDataModelElement('Space1', b', '),
        SequenceModelElement('CPUWorkload', [
            FixedDataModelElement('Fixed Workload', b'CPU Workload: '),
            DecimalIntegerValueModelElement('Workload'),
            FixedDataModelElement('Percent', b'%')
        ]),
        FixedDataModelElement('Space2', b', '),
        DateTimeModelElement('DTM', date_format_string)
    ]

    service_children_user_ip_address = [
        FixedDataModelElement('User', b'User '),
        DelimitedDataModelElement('Username', b' '),
        FixedDataModelElement('Action', b' changed IP address to '),
        IpAddressDataModelElement('IP')
    ]

    service_children_cron_job_announcement = [
        DateTimeModelElement('DTM', date_format_string),
        FixedDataModelElement('Space', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('Cron', cron),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Run', b']: Will run job `'),
        FixedWordlistDataModelElement(
            'CronType',
            [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']),
        FixedDataModelElement('Start Time', b'\' in 5 min.')
    ]

    service_children_cron_job_execution = [
        DateTimeModelElement('DTM', date_format_string),
        FixedDataModelElement('Space1', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('Cron', cron),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Job', b']: Job `'),
        FixedWordlistDataModelElement(
            'CronType',
            [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']),
        FixedDataModelElement('Started', b'\' started')
    ]

    service_children_parsing_model_element = [
        DateTimeModelElement('DateTimeModelElement',
                             b'Current DateTime: %d.%m.%Y %H:%M:%S'),
        DecimalFloatValueModelElement('DecimalFloatValueModelElement',
                                      value_sign_type='optional'),
        DecimalIntegerValueModelElement('DecimalIntegerValueModelElement',
                                        value_sign_type='optional',
                                        value_pad_type='blank'),
        SequenceModelElement('', [
            DelimitedDataModelElement('DelimitedDataModelElement', b';'),
            FixedDataModelElement('FixedDataModelElement', b';')
        ])
    ]

    # ElementValueBranchModelElement
    fixed_data_me1 = FixedDataModelElement("fixed1", b'match ')
    fixed_data_me2 = FixedDataModelElement("fixed2", b'fixed String')
    fixed_wordlist_data_model_element = FixedWordlistDataModelElement(
        "wordlist", [b'data: ', b'string: '])
    decimal_integer_value_model_element = DecimalIntegerValueModelElement(
        "decimal")

    service_children_parsing_model_element.append(
        ElementValueBranchModelElement(
            'ElementValueBranchModelElement',
            FirstMatchModelElement("first", [
                SequenceModelElement(
                    "seq1",
                    [fixed_data_me1, fixed_wordlist_data_model_element]),
                SequenceModelElement("seq2", [
                    fixed_data_me1, fixed_wordlist_data_model_element,
                    fixed_data_me2
                ])
            ]), "wordlist", {
                0: decimal_integer_value_model_element,
                1: fixed_data_me2
            }))
    service_children_parsing_model_element.append(
        HexStringModelElement('HexStringModelElement'))
    service_children_parsing_model_element.append(
        SequenceModelElement('', [
            FixedDataModelElement('FixedDataModelElement',
                                  b'Gateway IP-Address: '),
            IpAddressDataModelElement('IpAddressDataModelElement')
        ]))
    service_children_parsing_model_element.append(
        MultiLocaleDateTimeModelElement('MultiLocaleDateTimeModelElement',
                                        [(b'%b %d %Y', "de_AT.utf8", None)]))
    service_children_parsing_model_element.append(
        RepeatedElementDataModelElement(
            'RepeatedElementDataModelElement',
            SequenceModelElement('SequenceModelElement', [
                FixedDataModelElement('FixedDataModelElement',
                                      b'drawn number: '),
                DecimalIntegerValueModelElement(
                    'DecimalIntegerValueModelElement')
            ]), 1))
    service_children_parsing_model_element.append(
        VariableByteDataModelElement('VariableByteDataModelElement', b'-@#'))
    service_children_parsing_model_element.append(
        SequenceModelElement('', [
            WhiteSpaceLimitedDataModelElement(
                'WhiteSpaceLimitedDataModelElement'),
            FixedDataModelElement('', b' ')
        ]))

    # The Base64StringModelElement must be just before the AnyByteDataModelElement to avoid unexpected Matches.
    service_children_parsing_model_element.append(
        Base64StringModelElement('Base64StringModelElement'))

    # The OptionalMatchModelElement must be paired with a FirstMatchModelElement because it accepts all data and thus no data gets
    # to the AnyByteDataModelElement. The AnyByteDataModelElement must be last, because all bytes are accepted.
    service_children_parsing_model_element.append(
        OptionalMatchModelElement(
            'OptionalMatchModelElement',
            FirstMatchModelElement('FirstMatchModelElement', [
                FixedDataModelElement('FixedDataModelElement',
                                      b'The-searched-element-was-found!'),
                AnyByteDataModelElement('AnyByteDataModelElement')
            ])))

    parsing_model = FirstMatchModelElement('model', [
        SequenceModelElement('CronAnnouncement',
                             service_children_cron_job_announcement),
        SequenceModelElement('CronExecution',
                             service_children_cron_job_execution),
        SequenceModelElement('DailyCron', service_children_cron_job),
        SequenceModelElement('DiskReport', service_children_disk_report),
        SequenceModelElement('LoginDetails', service_children_login_details),
        DecimalIntegerValueModelElement('Random'),
        SequenceModelElement('RandomTime', service_children_random_time),
        SequenceModelElement('Sensors', service_children_sensors),
        SequenceModelElement('IPAddresses', service_children_user_ip_address),
        FirstMatchModelElement('ParsingME',
                               service_children_parsing_model_element)
    ])

    # Some generic imports.
    from aminer.analysis import AtomFilters

    # Create all global handler lists here and append the real handlers
    # later on.
    # Use this filter to distribute all atoms to the analysis handlers.
    atom_filter = AtomFilters.SubhandlerFilter(None)

    from aminer.analysis.TimestampCorrectionFilters import SimpleMonotonicTimestampAdjust
    simple_monotonic_timestamp_adjust = SimpleMonotonicTimestampAdjust(
        [atom_filter])
    analysis_context.register_component(
        simple_monotonic_timestamp_adjust,
        component_name="SimpleMonotonicTimestampAdjust")

    from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler
    stream_printer_event_handler = StreamPrinterEventHandler(analysis_context)
    from aminer.events.SyslogWriterEventHandler import SyslogWriterEventHandler
    syslog_event_handler = SyslogWriterEventHandler(analysis_context)
    from aminer.events import DefaultMailNotificationEventHandler
    if DefaultMailNotificationEventHandler.CONFIG_KEY_MAIL_TARGET_ADDRESS in analysis_context.aminer_config.config_properties:
        mail_notification_handler = DefaultMailNotificationEventHandler(
            analysis_context)
        analysis_context.register_component(mail_notification_handler,
                                            component_name="MailHandler")
    anomaly_event_handlers = [
        stream_printer_event_handler, syslog_event_handler,
        mail_notification_handler
    ]

    # Now define the AtomizerFactory using the model. A simple line based one is usually sufficient.
    from aminer.input import SimpleByteStreamLineAtomizerFactory
    analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory(
        parsing_model, [simple_monotonic_timestamp_adjust],
        anomaly_event_handlers)

    # Just report all unparsed atoms to the event handlers.
    from aminer.input import SimpleUnparsedAtomHandler
    simple_unparsed_atom_handler = SimpleUnparsedAtomHandler(
        anomaly_event_handlers)
    atom_filter.add_handler(simple_unparsed_atom_handler,
                            stop_when_handled_flag=True)
    analysis_context.register_component(simple_unparsed_atom_handler,
                                        component_name="UnparsedHandler")

    from aminer.analysis.TimestampsUnsortedDetector import TimestampsUnsortedDetector
    timestamps_unsorted_detector = TimestampsUnsortedDetector(
        analysis_context.aminer_config, anomaly_event_handlers)
    atom_filter.add_handler(timestamps_unsorted_detector)
    analysis_context.register_component(
        timestamps_unsorted_detector,
        component_name="TimestampsUnsortedDetector")

    from aminer.analysis import Rules
    from aminer.analysis import WhitelistViolationDetector
    whitelist_rules = [
        Rules.OrMatchRule([
            Rules.AndMatchRule([
                Rules.PathExistsMatchRule(
                    '/model/LoginDetails/PastTime/Time/Minutes'),
                Rules.NegationMatchRule(
                    Rules.ValueMatchRule('/model/LoginDetails/Username',
                                         b'root'))
            ]),
            Rules.AndMatchRule([
                Rules.NegationMatchRule(
                    Rules.PathExistsMatchRule(
                        '/model/LoginDetails/PastTime/Time/Minutes')),
                Rules.PathExistsMatchRule('/model/LoginDetails')
            ]),
            Rules.NegationMatchRule(
                Rules.PathExistsMatchRule('/model/LoginDetails'))
        ])
    ]

    # This rule list should trigger, when the line does not look like: User root (logged in, logged out)
    # or User 'username' (logged in, logged out) x minutes ago.
    whitelist_violation_detector = WhitelistViolationDetector(
        analysis_context.aminer_config, whitelist_rules,
        anomaly_event_handlers)
    analysis_context.register_component(whitelist_violation_detector,
                                        component_name="Whitelist")
    atom_filter.add_handler(whitelist_violation_detector)

    from aminer.analysis import NewMatchPathDetector
    new_match_path_detector = NewMatchPathDetector(
        analysis_context.aminer_config,
        anomaly_event_handlers,
        auto_include_flag=True)
    analysis_context.register_component(new_match_path_detector,
                                        component_name="NewMatchPath")
    atom_filter.add_handler(new_match_path_detector)

    def tuple_transformation_function(match_value_list):
        extra_data = enhanced_new_match_path_value_combo_detector.known_values_dict.get(
            tuple(match_value_list), None)
        if extra_data is not None:
            mod = 10000
            if (extra_data[2] + 1) % mod == 0:
                enhanced_new_match_path_value_combo_detector.auto_include_flag = False
            else:
                enhanced_new_match_path_value_combo_detector.auto_include_flag = True
        return match_value_list

    from aminer.analysis.EnhancedNewMatchPathValueComboDetector import EnhancedNewMatchPathValueComboDetector
    enhanced_new_match_path_value_combo_detector = EnhancedNewMatchPathValueComboDetector(
        analysis_context.aminer_config,
        ['/model/DailyCron/UName', '/model/DailyCron/JobNumber'],
        anomaly_event_handlers,
        auto_include_flag=True,
        tuple_transformation_function=tuple_transformation_function)
    analysis_context.register_component(
        enhanced_new_match_path_value_combo_detector,
        component_name="EnhancedNewValueCombo")
    atom_filter.add_handler(enhanced_new_match_path_value_combo_detector)

    from aminer.analysis.HistogramAnalysis import HistogramAnalysis, LinearNumericBinDefinition, ModuloTimeBinDefinition, \
        PathDependentHistogramAnalysis
    modulo_time_bin_definition = ModuloTimeBinDefinition(
        86400, 3600, 0, 1, 24, True)
    linear_numeric_bin_definition = LinearNumericBinDefinition(50, 5, 20, True)
    histogram_analysis = HistogramAnalysis(
        analysis_context.aminer_config,
        [('/model/RandomTime/Random', modulo_time_bin_definition),
         ('/model/Random', linear_numeric_bin_definition)], 10,
        anomaly_event_handlers)
    analysis_context.register_component(histogram_analysis,
                                        component_name="HistogramAnalysis")
    atom_filter.add_handler(histogram_analysis)

    path_dependent_histogram_analysis = PathDependentHistogramAnalysis(
        analysis_context.aminer_config, '/model/RandomTime',
        modulo_time_bin_definition, 10, anomaly_event_handlers)
    analysis_context.register_component(
        path_dependent_histogram_analysis,
        component_name="PathDependentHistogramAnalysis")
    atom_filter.add_handler(path_dependent_histogram_analysis)

    from aminer.analysis.MatchValueAverageChangeDetector import MatchValueAverageChangeDetector
    match_value_average_change_detector = MatchValueAverageChangeDetector(
        analysis_context.aminer_config, anomaly_event_handlers, None,
        ['/model/Random'], 100, 10)
    analysis_context.register_component(
        match_value_average_change_detector,
        component_name="MatchValueAverageChange")
    atom_filter.add_handler(match_value_average_change_detector)

    import sys
    from aminer.analysis.MatchValueStreamWriter import MatchValueStreamWriter
    match_value_stream_writer = MatchValueStreamWriter(sys.stdout, [
        '/model/Sensors/CPUTemp', '/model/Sensors/CPUWorkload',
        '/model/Sensors/DTM'
    ], b';', b'')
    analysis_context.register_component(
        match_value_stream_writer, component_name="MatchValueStreamWriter")
    atom_filter.add_handler(match_value_stream_writer)

    from aminer.analysis.NewMatchPathValueComboDetector import NewMatchPathValueComboDetector
    new_match_path_value_combo_detector = NewMatchPathValueComboDetector(
        analysis_context.aminer_config,
        ['/model/IPAddresses/Username', '/model/IPAddresses/IP'],
        anomaly_event_handlers,
        auto_include_flag=True)
    analysis_context.register_component(
        new_match_path_value_combo_detector,
        component_name="NewMatchPathValueCombo")
    atom_filter.add_handler(new_match_path_value_combo_detector)

    from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector
    new_match_path_value_detector = NewMatchPathValueDetector(
        analysis_context.aminer_config,
        ['/model/DailyCron/JobNumber', '/model/IPAddresses/Username'],
        anomaly_event_handlers,
        auto_include_flag=True)
    analysis_context.register_component(new_match_path_value_detector,
                                        component_name="NewMatchPathValue")
    atom_filter.add_handler(new_match_path_value_detector)

    from aminer.analysis.MissingMatchPathValueDetector import MissingMatchPathValueDetector
    missing_match_path_value_detector = MissingMatchPathValueDetector(
        analysis_context.aminer_config,
        '/model/DiskReport/Space',
        anomaly_event_handlers,
        auto_include_flag=True,
        default_interval=2,
        realert_interval=5)
    analysis_context.register_component(missing_match_path_value_detector,
                                        component_name="MissingMatch")
    atom_filter.add_handler(missing_match_path_value_detector)

    from aminer.analysis.TimeCorrelationDetector import TimeCorrelationDetector
    time_correlation_detector = TimeCorrelationDetector(
        analysis_context.aminer_config,
        2,
        1,
        0,
        anomaly_event_handlers,
        record_count_before_event=70000)
    analysis_context.register_component(
        time_correlation_detector, component_name="TimeCorrelationDetector")
    atom_filter.add_handler(time_correlation_detector)

    from aminer.analysis.TimeCorrelationViolationDetector import TimeCorrelationViolationDetector, CorrelationRule, EventClassSelector
    cron_job_announcement = CorrelationRule(
        'CronJobAnnouncement',
        5,
        6,
        max_artefacts_a_for_single_b=1,
        artefact_match_parameters=[('/model/CronAnnouncement/JobNumber',
                                    '/model/CronExecution/JobNumber')])
    a_class_selector = EventClassSelector('Announcement',
                                          [cron_job_announcement], None)
    b_class_selector = EventClassSelector('Execution', None,
                                          [cron_job_announcement])
    rules = [
        Rules.PathExistsMatchRule('/model/CronAnnouncement/Run',
                                  a_class_selector),
        Rules.PathExistsMatchRule('/model/CronExecution/Job', b_class_selector)
    ]

    time_correlation_violation_detector = TimeCorrelationViolationDetector(
        analysis_context.aminer_config, rules, anomaly_event_handlers)
    analysis_context.register_component(
        time_correlation_violation_detector,
        component_name="TimeCorrelationViolationDetector")
    atom_filter.add_handler(time_correlation_violation_detector)
Beispiel #3
0
def build_analysis_pipeline(analysis_context):
    """
    Define the function to create pipeline for parsing the log data.
    It has also to define an AtomizerFactory to instruct AMiner how to process incoming data streams to create log atoms from them.
    """
    date_format_string = b'%Y-%m-%d %H:%M:%S'
    cron = b' cron['

    # Build the parsing model:
    from aminer.parsing import FirstMatchModelElement, SequenceModelElement, DecimalFloatValueModelElement, FixedDataModelElement, \
        DelimitedDataModelElement, AnyByteDataModelElement, FixedWordlistDataModelElement, DecimalIntegerValueModelElement, \
        DateTimeModelElement, IpAddressDataModelElement, Base64StringModelElement, ElementValueBranchModelElement, HexStringModelElement, \
        MultiLocaleDateTimeModelElement, OptionalMatchModelElement, RepeatedElementDataModelElement, VariableByteDataModelElement, \
        WhiteSpaceLimitedDataModelElement

    service_children_disk_report = [
        FixedDataModelElement(
            'Space',
            b' Current Disk Data is: Filesystem     Type  Size  Used Avail Use%'
        ),
        DelimitedDataModelElement('Data', b'%'),
        AnyByteDataModelElement('Rest')
    ]

    service_children_login_details = [
        FixedDataModelElement('User', b'User '),
        DelimitedDataModelElement('Username', b' '),
        FixedWordlistDataModelElement('Status',
                                      [b' logged in', b' logged out']),
        OptionalMatchModelElement(
            'PastTime',
            SequenceModelElement('Time', [
                FixedDataModelElement('Blank', b' '),
                DecimalIntegerValueModelElement('Minutes'),
                FixedDataModelElement('Ago', b' minutes ago.')
            ]))
    ]

    service_children_cron_job = [
        DateTimeModelElement('DTM', date_format_string),
        FixedDataModelElement('UNameSpace1', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('UNameSpace2', b' '),
        DelimitedDataModelElement('User', b' '),
        FixedDataModelElement('Cron', cron),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Details', b']: Job `cron.daily` started.')
    ]

    service_children_random_time = [
        FixedDataModelElement('Space', b'Random: '),
        DecimalIntegerValueModelElement('Random')
    ]

    service_children_sensors = [
        SequenceModelElement('CPUTemp', [
            FixedDataModelElement('FixedTemp', b'CPU Temp: '),
            DecimalIntegerValueModelElement('Temp'),
            FixedDataModelElement('Degrees', b'\xc2\xb0C')
        ]),
        FixedDataModelElement('Space1', b', '),
        SequenceModelElement('CPUWorkload', [
            FixedDataModelElement('FixedWorkload', b'CPU Workload: '),
            DecimalIntegerValueModelElement('Workload'),
            FixedDataModelElement('Percent', b'%')
        ]),
        FixedDataModelElement('Space2', b', '),
        DateTimeModelElement('DTM', date_format_string)
    ]

    service_children_user_ip_address = [
        FixedDataModelElement('User', b'User '),
        DelimitedDataModelElement('Username', b' '),
        FixedDataModelElement('Action', b' changed IP address to '),
        IpAddressDataModelElement('IP')
    ]

    service_children_cron_job_announcement = [
        DateTimeModelElement('DTM', date_format_string),
        FixedDataModelElement('Space', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('Cron', cron),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Run', b']: Will run job `'),
        FixedWordlistDataModelElement(
            'CronType',
            [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']),
        FixedDataModelElement('StartTime', b'\' in 5 min.')
    ]

    service_children_cron_job_execution = [
        DateTimeModelElement('DTM', date_format_string),
        FixedDataModelElement('Space1', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('Cron', cron),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Job', b']: Job `'),
        FixedWordlistDataModelElement(
            'CronType',
            [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']),
        FixedDataModelElement('Started', b'\' started')
    ]

    service_children_audit = [
        SequenceModelElement('path', [
            FixedDataModelElement('type', b'type=PATH '),
            FixedDataModelElement('msg_audit', b'msg=audit('),
            DelimitedDataModelElement('msg', b':'),
            FixedDataModelElement('placeholder', b':'),
            DecimalIntegerValueModelElement('id'),
            FixedDataModelElement('item_string', b'): item='),
            DecimalIntegerValueModelElement('item'),
            FixedDataModelElement('name_string', b' name="'),
            DelimitedDataModelElement('name', b'"'),
            FixedDataModelElement('inode_string', b'" inode='),
            DecimalIntegerValueModelElement('inode'),
            FixedDataModelElement('dev_string', b' dev='),
            DelimitedDataModelElement('dev', b' '),
            FixedDataModelElement('mode_string', b' mode='),
            DecimalIntegerValueModelElement('mode'),
            FixedDataModelElement('ouid_string', b' ouid='),
            DecimalIntegerValueModelElement('ouid'),
            FixedDataModelElement('ogid_string', b' ogid='),
            DecimalIntegerValueModelElement('ogid'),
            FixedDataModelElement('rdev_string', b' rdev='),
            DelimitedDataModelElement('rdev', b' '),
            FixedDataModelElement('nametype_string', b' nametype='),
            FixedWordlistDataModelElement('nametype', [b'NORMAL', b'ERROR'])
        ]),
        SequenceModelElement('syscall', [
            FixedDataModelElement('type', b'type=SYSCALL '),
            FixedDataModelElement('msg_audit', b'msg=audit('),
            DelimitedDataModelElement('msg', b':'),
            FixedDataModelElement('placeholder', b':'),
            DecimalIntegerValueModelElement('id'),
            FixedDataModelElement('arch_string', b'): arch='),
            DelimitedDataModelElement('arch', b' '),
            FixedDataModelElement('syscall_string', b' syscall='),
            DecimalIntegerValueModelElement('syscall'),
            FixedDataModelElement('success_string', b' success='),
            FixedWordlistDataModelElement('success', [b'yes', b'no']),
            FixedDataModelElement('exit_string', b' exit='),
            DecimalIntegerValueModelElement('exit'),
            AnyByteDataModelElement('remainding_data')
        ])
    ]

    service_children_parsing_model_element = [
        DateTimeModelElement('DateTimeModelElement',
                             b'Current DateTime: %d.%m.%Y %H:%M:%S'),
        DecimalFloatValueModelElement('DecimalFloatValueModelElement',
                                      value_sign_type='optional'),
        DecimalIntegerValueModelElement('DecimalIntegerValueModelElement',
                                        value_sign_type='optional',
                                        value_pad_type='blank'),
        SequenceModelElement('', [
            DelimitedDataModelElement('DelimitedDataModelElement', b';'),
            FixedDataModelElement('FixedDataModelElement', b';')
        ])
    ]

    # ElementValueBranchModelElement
    fixed_data_me1 = FixedDataModelElement("fixed1", b'match ')
    fixed_data_me2 = FixedDataModelElement("fixed2", b'fixed String')
    fixed_wordlist_data_model_element = FixedWordlistDataModelElement(
        "wordlist", [b'data: ', b'string: '])
    decimal_integer_value_model_element = DecimalIntegerValueModelElement(
        "decimal")

    service_children_parsing_model_element.append(
        ElementValueBranchModelElement(
            'ElementValueBranchModelElement',
            FirstMatchModelElement("first", [
                SequenceModelElement(
                    "seq1",
                    [fixed_data_me1, fixed_wordlist_data_model_element]),
                SequenceModelElement("seq2", [
                    fixed_data_me1, fixed_wordlist_data_model_element,
                    fixed_data_me2
                ])
            ]), "wordlist", {
                0: decimal_integer_value_model_element,
                1: fixed_data_me2
            }))
    service_children_parsing_model_element.append(
        HexStringModelElement('HexStringModelElement'))
    service_children_parsing_model_element.append(
        SequenceModelElement('', [
            FixedDataModelElement('FixedDataModelElement',
                                  b'Gateway IP-Address: '),
            IpAddressDataModelElement('IpAddressDataModelElement')
        ]))
    import locale
    loc = locale.getlocale()
    if loc == (None, None):
        loc = ('en_US', 'utf8')
    service_children_parsing_model_element.append(
        MultiLocaleDateTimeModelElement('MultiLocaleDateTimeModelElement',
                                        [(b'%b %d %Y', '%s.%s' %
                                          (loc), None)]))
    service_children_parsing_model_element.append(
        RepeatedElementDataModelElement(
            'RepeatedElementDataModelElement',
            SequenceModelElement('SequenceModelElement', [
                FixedDataModelElement('FixedDataModelElement',
                                      b'drawn number: '),
                DecimalIntegerValueModelElement(
                    'DecimalIntegerValueModelElement')
            ]), 1))
    service_children_parsing_model_element.append(
        VariableByteDataModelElement('VariableByteDataModelElement', b'-@#'))
    service_children_parsing_model_element.append(
        SequenceModelElement('', [
            WhiteSpaceLimitedDataModelElement(
                'WhiteSpaceLimitedDataModelElement'),
            FixedDataModelElement('', b' ')
        ]))

    # The Base64StringModelElement must be just before the AnyByteDataModelElement to avoid unexpected Matches.
    service_children_parsing_model_element.append(
        Base64StringModelElement('Base64StringModelElement'))

    # The OptionalMatchModelElement must be paired with a FirstMatchModelElement because it accepts all data and thus no data gets to the
    # AnyByteDataModelElement. The AnyByteDataModelElement must be last, because all bytes are accepted.
    service_children_parsing_model_element.append(
        OptionalMatchModelElement(
            'OptionalMatchModelElement',
            FirstMatchModelElement('FirstMatchModelElement', [
                FixedDataModelElement('FixedDataModelElement',
                                      b'The-searched-element-was-found!'),
                SequenceModelElement('', [
                    FixedDataModelElement('FixedDME', b'Any:'),
                    AnyByteDataModelElement('AnyByteDataModelElement')
                ])
            ])))

    alphabet = b'abcdef'
    service_children_ecd = []
    for _, char in enumerate(alphabet):
        char = bytes([char])
        service_children_ecd.append(FixedDataModelElement(char.decode(), char))

    parsing_model = FirstMatchModelElement('model', [
        SequenceModelElement('CronAnnouncement',
                             service_children_cron_job_announcement),
        SequenceModelElement('CronExecution',
                             service_children_cron_job_execution),
        SequenceModelElement('DailyCron', service_children_cron_job),
        SequenceModelElement('DiskReport', service_children_disk_report),
        SequenceModelElement('LoginDetails', service_children_login_details),
        DecimalIntegerValueModelElement('Random'),
        SequenceModelElement('RandomTime', service_children_random_time),
        SequenceModelElement('Sensors', service_children_sensors),
        SequenceModelElement('IPAddresses', service_children_user_ip_address),
        FirstMatchModelElement('type', service_children_audit),
        FirstMatchModelElement('ECD', service_children_ecd),
        FirstMatchModelElement('ParsingME',
                               service_children_parsing_model_element)
    ])

    # Some generic imports.
    from aminer.analysis import AtomFilters

    # Create all global handler lists here and append the real handlers later on.
    # Use this filter to distribute all atoms to the analysis handlers.
    atom_filter = AtomFilters.SubhandlerFilter(None)

    from aminer.analysis.TimestampCorrectionFilters import SimpleMonotonicTimestampAdjust
    simple_monotonic_timestamp_adjust = SimpleMonotonicTimestampAdjust(
        [atom_filter])
    analysis_context.register_component(
        simple_monotonic_timestamp_adjust,
        component_name="SimpleMonotonicTimestampAdjust")

    from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler
    stream_printer_event_handler = StreamPrinterEventHandler(analysis_context)
    anomaly_event_handlers = [stream_printer_event_handler]

    # Now define the AtomizerFactory using the model. A simple line
    # based one is usually sufficient.
    from aminer.input import SimpleByteStreamLineAtomizerFactory
    analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory(
        parsing_model, [simple_monotonic_timestamp_adjust],
        anomaly_event_handlers,
        default_timestamp_paths=["/model/DailyCron/DTM"])

    # Just report all unparsed atoms to the event handlers.
    from aminer.input import SimpleUnparsedAtomHandler, VerboseUnparsedAtomHandler
    simple_unparsed_atom_handler = SimpleUnparsedAtomHandler(
        anomaly_event_handlers)
    atom_filter.add_handler(simple_unparsed_atom_handler,
                            stop_when_handled_flag=False)
    analysis_context.register_component(simple_unparsed_atom_handler,
                                        component_name="SimpleUnparsedHandler")

    verbose_unparsed_atom_handler = VerboseUnparsedAtomHandler(
        anomaly_event_handlers, parsing_model)
    atom_filter.add_handler(verbose_unparsed_atom_handler,
                            stop_when_handled_flag=True)
    analysis_context.register_component(
        verbose_unparsed_atom_handler, component_name="VerboseUnparsedHandler")

    from aminer.analysis.TimestampsUnsortedDetector import TimestampsUnsortedDetector
    timestamps_unsorted_detector = TimestampsUnsortedDetector(
        analysis_context.aminer_config, anomaly_event_handlers)
    atom_filter.add_handler(timestamps_unsorted_detector)
    analysis_context.register_component(
        timestamps_unsorted_detector,
        component_name="TimestampsUnsortedDetector")

    from aminer.analysis import Rules
    from aminer.analysis import AllowlistViolationDetector

    # This rule list should trigger, when the line does not look like: User root (logged in, logged out)
    # or User 'username' (logged in, logged out) x minutes ago.
    allowlist_rules = [
        Rules.OrMatchRule([
            Rules.AndMatchRule([
                Rules.PathExistsMatchRule(
                    '/model/LoginDetails/PastTime/Time/Minutes'),
                Rules.NegationMatchRule(
                    Rules.ValueMatchRule('/model/LoginDetails/Username',
                                         b'root'))
            ]),
            Rules.AndMatchRule([
                Rules.NegationMatchRule(
                    Rules.PathExistsMatchRule(
                        '/model/LoginDetails/PastTime/Time/Minutes')),
                Rules.PathExistsMatchRule('/model/LoginDetails')
            ]),
            Rules.NegationMatchRule(
                Rules.PathExistsMatchRule('/model/LoginDetails'))
        ])
    ]

    allowlist_violation_detector = AllowlistViolationDetector(
        analysis_context.aminer_config,
        allowlist_rules,
        anomaly_event_handlers,
        output_log_line=True)
    analysis_context.register_component(allowlist_violation_detector,
                                        component_name="Allowlist")
    atom_filter.add_handler(allowlist_violation_detector)

    from aminer.analysis import ParserCount
    parser_count = ParserCount(analysis_context.aminer_config, None,
                               anomaly_event_handlers, 10)
    analysis_context.register_component(parser_count,
                                        component_name="ParserCount")
    atom_filter.add_handler(parser_count)

    from aminer.analysis.EventTypeDetector import EventTypeDetector
    etd = EventTypeDetector(analysis_context.aminer_config,
                            anomaly_event_handlers)
    analysis_context.register_component(etd,
                                        component_name="EventTypeDetector")
    atom_filter.add_handler(etd)

    from aminer.analysis.VariableTypeDetector import VariableTypeDetector
    vtd = VariableTypeDetector(analysis_context.aminer_config,
                               anomaly_event_handlers,
                               etd,
                               silence_output_except_indicator=False,
                               output_log_line=False)
    analysis_context.register_component(vtd,
                                        component_name="VariableTypeDetector")
    atom_filter.add_handler(vtd)

    from aminer.analysis.VariableCorrelationDetector import VariableCorrelationDetector
    vtd = VariableCorrelationDetector(analysis_context.aminer_config,
                                      anomaly_event_handlers,
                                      etd,
                                      disc_div_thres=0.5)
    analysis_context.register_component(
        vtd, component_name="VariableCorrelationDetector")
    atom_filter.add_handler(vtd)

    from aminer.analysis import EventCorrelationDetector
    ecd = EventCorrelationDetector(analysis_context.aminer_config,
                                   anomaly_event_handlers,
                                   check_rules_flag=True,
                                   hypothesis_max_delta_time=1.0,
                                   auto_include_flag=True)
    analysis_context.register_component(
        ecd, component_name="EventCorrelationDetector")
    atom_filter.add_handler(ecd)

    from aminer.analysis import MatchFilter
    match_filter = MatchFilter(analysis_context.aminer_config,
                               ['/model/Random'],
                               anomaly_event_handlers,
                               target_value_list=[1, 10, 100],
                               output_log_line=True)
    analysis_context.register_component(match_filter,
                                        component_name="MatchFilter")
    atom_filter.add_handler(match_filter)

    from aminer.analysis import NewMatchPathDetector
    new_match_path_detector = NewMatchPathDetector(
        analysis_context.aminer_config,
        anomaly_event_handlers,
        auto_include_flag=True,
        output_log_line=True)
    analysis_context.register_component(new_match_path_detector,
                                        component_name="NewMatchPath")
    atom_filter.add_handler(new_match_path_detector)

    def tuple_transformation_function(match_value_list):
        """Only allow output of the EnhancedNewMatchPathValueComboDetector after every 10th element."""
        extra_data = enhanced_new_match_path_value_combo_detector.known_values_dict.get(
            tuple(match_value_list))
        if extra_data is not None:
            mod = 10
            if (extra_data[2] + 1) % mod == 0:
                enhanced_new_match_path_value_combo_detector.auto_include_flag = False
            else:
                enhanced_new_match_path_value_combo_detector.auto_include_flag = True
        return match_value_list

    from aminer.analysis.EnhancedNewMatchPathValueComboDetector import EnhancedNewMatchPathValueComboDetector
    enhanced_new_match_path_value_combo_detector = EnhancedNewMatchPathValueComboDetector(
        analysis_context.aminer_config,
        ['/model/DailyCron/UName', '/model/DailyCron/JobNumber'],
        anomaly_event_handlers,
        auto_include_flag=True,
        tuple_transformation_function=tuple_transformation_function,
        output_log_line=True)
    analysis_context.register_component(
        enhanced_new_match_path_value_combo_detector,
        component_name="EnhancedNewValueCombo")
    atom_filter.add_handler(enhanced_new_match_path_value_combo_detector)

    from aminer.analysis.HistogramAnalysis import HistogramAnalysis, LinearNumericBinDefinition, ModuloTimeBinDefinition, \
        PathDependentHistogramAnalysis
    modulo_time_bin_definition = ModuloTimeBinDefinition(
        86400, 3600, 0, 1, 24, True)
    linear_numeric_bin_definition = LinearNumericBinDefinition(50, 5, 20, True)
    histogram_analysis = HistogramAnalysis(
        analysis_context.aminer_config,
        [('/model/RandomTime/Random', modulo_time_bin_definition),
         ('/model/Random', linear_numeric_bin_definition)],
        10,
        anomaly_event_handlers,
        output_log_line=True)
    analysis_context.register_component(histogram_analysis,
                                        component_name="HistogramAnalysis")
    atom_filter.add_handler(histogram_analysis)

    path_dependent_histogram_analysis = PathDependentHistogramAnalysis(
        analysis_context.aminer_config,
        '/model/RandomTime',
        modulo_time_bin_definition,
        10,
        anomaly_event_handlers,
        output_log_line=True)
    analysis_context.register_component(
        path_dependent_histogram_analysis,
        component_name="PathDependentHistogramAnalysis")
    atom_filter.add_handler(path_dependent_histogram_analysis)

    from aminer.analysis.MatchValueAverageChangeDetector import MatchValueAverageChangeDetector
    match_value_average_change_detector = MatchValueAverageChangeDetector(
        analysis_context.aminer_config,
        anomaly_event_handlers,
        None, ['/model/Random'],
        100,
        10,
        output_log_line=True)
    analysis_context.register_component(
        match_value_average_change_detector,
        component_name="MatchValueAverageChange")
    atom_filter.add_handler(match_value_average_change_detector)

    import sys
    from aminer.analysis.MatchValueStreamWriter import MatchValueStreamWriter
    match_value_stream_writer = MatchValueStreamWriter(sys.stdout, [
        '/model/Sensors/CPUTemp', '/model/Sensors/CPUWorkload',
        '/model/Sensors/DTM'
    ], b';', b'')
    analysis_context.register_component(
        match_value_stream_writer, component_name="MatchValueStreamWriter")
    atom_filter.add_handler(match_value_stream_writer)

    from aminer.analysis.NewMatchPathValueComboDetector import NewMatchPathValueComboDetector
    new_match_path_value_combo_detector = NewMatchPathValueComboDetector(
        analysis_context.aminer_config,
        ['/model/IPAddresses/Username', '/model/IPAddresses/IP'],
        anomaly_event_handlers,
        output_log_line=True,
        auto_include_flag=True)
    analysis_context.register_component(
        new_match_path_value_combo_detector,
        component_name="NewMatchPathValueCombo")
    atom_filter.add_handler(new_match_path_value_combo_detector)

    from aminer.analysis.NewMatchIdValueComboDetector import NewMatchIdValueComboDetector
    new_match_id_value_combo_detector = NewMatchIdValueComboDetector(
        analysis_context.aminer_config,
        ['/model/type/path/name', '/model/type/syscall/syscall'],
        anomaly_event_handlers,
        id_path_list=['/model/type/path/id', '/model/type/syscall/id'],
        min_allowed_time_diff=5,
        auto_include_flag=True,
        allow_missing_values_flag=True,
        output_log_line=True)
    analysis_context.register_component(
        new_match_id_value_combo_detector,
        component_name="NewMatchIdValueComboDetector")
    atom_filter.add_handler(new_match_id_value_combo_detector)

    from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector
    new_match_path_value_detector = NewMatchPathValueDetector(
        analysis_context.aminer_config,
        ['/model/DailyCron/JobNumber', '/model/IPAddresses/Username'],
        anomaly_event_handlers,
        auto_include_flag=True,
        output_log_line=True)
    analysis_context.register_component(new_match_path_value_detector,
                                        component_name="NewMatchPathValue")
    atom_filter.add_handler(new_match_path_value_detector)

    from aminer.analysis.MissingMatchPathValueDetector import MissingMatchPathValueDetector
    missing_match_path_value_detector = MissingMatchPathValueDetector(
        analysis_context.aminer_config,
        '/model/DiskReport/Space',
        anomaly_event_handlers,
        auto_include_flag=True,
        default_interval=2,
        realert_interval=5,
        output_log_line=True)
    analysis_context.register_component(missing_match_path_value_detector,
                                        component_name="MissingMatch")
    atom_filter.add_handler(missing_match_path_value_detector)

    from aminer.analysis.TimeCorrelationDetector import TimeCorrelationDetector
    time_correlation_detector = TimeCorrelationDetector(
        analysis_context.aminer_config,
        anomaly_event_handlers,
        2,
        min_rule_attributes=1,
        max_rule_attributes=5,
        record_count_before_event=10000,
        output_log_line=True)
    analysis_context.register_component(
        time_correlation_detector, component_name="TimeCorrelationDetector")
    atom_filter.add_handler(time_correlation_detector)

    from aminer.analysis.TimeCorrelationViolationDetector import TimeCorrelationViolationDetector, CorrelationRule, EventClassSelector
    cron_job_announcement = CorrelationRule(
        'CronJobAnnouncement',
        5,
        6,
        max_artefacts_a_for_single_b=1,
        artefact_match_parameters=[('/model/CronAnnouncement/JobNumber',
                                    '/model/CronExecution/JobNumber')])
    a_class_selector = EventClassSelector('Announcement',
                                          [cron_job_announcement], None)
    b_class_selector = EventClassSelector('Execution', None,
                                          [cron_job_announcement])
    rules = [
        Rules.PathExistsMatchRule('/model/CronAnnouncement/Run',
                                  a_class_selector),
        Rules.PathExistsMatchRule('/model/CronExecution/Job', b_class_selector)
    ]

    time_correlation_violation_detector = TimeCorrelationViolationDetector(
        analysis_context.aminer_config,
        rules,
        anomaly_event_handlers,
        output_log_line=True)
    analysis_context.register_component(
        time_correlation_violation_detector,
        component_name="TimeCorrelationViolationDetector")
    atom_filter.add_handler(time_correlation_violation_detector)
def build_analysis_pipeline(analysis_context):
    """Define the function to create pipeline for parsing the log data. It has also to define an AtomizerFactory to instruct AMiner
    how to process incoming data streams to create log atoms from them."""

    # Build the parsing model:
    from aminer.parsing import FirstMatchModelElement
    from aminer.parsing import SequenceModelElement

    from aminer.parsing.DateTimeModelElement import DateTimeModelElement
    import datetime
    from aminer.parsing import FixedDataModelElement
    from aminer.parsing.DelimitedDataModelElement import DelimitedDataModelElement
    from aminer.parsing import AnyByteDataModelElement

    service_children_disk_upgrade = [
        DateTimeModelElement(
            'DTM', b'%Y-%m-%d %H:%M:%S',
            datetime.datetime.now(datetime.timezone.utc).astimezone().tzinfo),
        FixedDataModelElement('UNameSpace1', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('UNameSpace2', b' '),
        DelimitedDataModelElement('User', b' '),
        FixedDataModelElement('HDRepair',
                              b' System rebooted for hard disk upgrade')
    ]

    service_children_home_path = [
        FixedDataModelElement(
            'Pwd',
            b'The Path of the home directory shown by pwd of the user '),
        DelimitedDataModelElement('Username', b' '),
        FixedDataModelElement('Is', b' is: '),
        AnyByteDataModelElement('Path')
    ]

    parsing_model = FirstMatchModelElement('model', [
        SequenceModelElement('DiskUpgrade', service_children_disk_upgrade),
        SequenceModelElement('HomePath', service_children_home_path)
    ])

    # Some generic imports.
    from aminer.analysis import AtomFilters

    # Create all global handler lists here and append the real handlers later on.
    # Use this filter to distribute all atoms to the analysis handlers.
    atom_filter = AtomFilters.SubhandlerFilter(None)

    from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler
    stream_printer_event_handler = StreamPrinterEventHandler(analysis_context)
    from aminer.events.SyslogWriterEventHandler import SyslogWriterEventHandler
    syslog_writer_event_handler = SyslogWriterEventHandler(analysis_context)
    anomaly_event_handlers = [
        stream_printer_event_handler, syslog_writer_event_handler
    ]

    from aminer.input import SimpleMultisourceAtomSync
    simple_multisource_atom_sync = SimpleMultisourceAtomSync([atom_filter], 9)

    # Now define the AtomizerFactory using the model. A simple line
    # based one is usually sufficient.
    from aminer.input import SimpleByteStreamLineAtomizerFactory
    analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory(
        parsing_model, [simple_multisource_atom_sync],
        anomaly_event_handlers,
        default_timestamp_paths=['model/DiskUpgrade/Date'])

    # Just report all unparsed atoms to the event handlers.
    from aminer.input import SimpleUnparsedAtomHandler
    simple_unparsed_atom_handler = SimpleUnparsedAtomHandler(
        anomaly_event_handlers)
    atom_filter.add_handler(simple_unparsed_atom_handler,
                            stop_when_handled_flag=True)
    analysis_context.register_component(simple_unparsed_atom_handler,
                                        component_name="UnparsedHandler")

    from aminer.analysis import NewMatchPathDetector
    new_match_path_detector = NewMatchPathDetector(
        analysis_context.aminer_config,
        anomaly_event_handlers,
        auto_include_flag=True)
    analysis_context.register_component(new_match_path_detector,
                                        component_name="NewPath")
    atom_filter.add_handler(new_match_path_detector)

    from aminer.analysis import NewMatchPathValueComboDetector
    new_match_path_value_combo_detector = NewMatchPathValueComboDetector(
        analysis_context.aminer_config,
        ['/model/HomePath/Username', '/model/HomePath/Path'],
        anomaly_event_handlers,
        auto_include_flag=True)
    analysis_context.register_component(new_match_path_value_combo_detector,
                                        component_name="NewValueCombo")
    atom_filter.add_handler(new_match_path_value_combo_detector)

    # Include the e-mail notification handler only if the configuration parameter was set.
    from aminer.events import DefaultMailNotificationEventHandler
    if DefaultMailNotificationEventHandler.CONFIG_KEY_MAIL_TARGET_ADDRESS in analysis_context.aminer_config.config_properties:
        mail_notification_handler = DefaultMailNotificationEventHandler(
            analysis_context)
        analysis_context.register_component(mail_notification_handler,
                                            component_name="MailHandler")
        anomaly_event_handlers.append(mail_notification_handler)
Beispiel #5
0
def build_analysis_pipeline(analysis_context):
    """
    Define the function to create pipeline for parsing the log data.
    It has also to define an AtomizerFactory to instruct AMiner how to process incoming data streams to create log atoms from them.
    """
    date_format_string = b'%Y-%m-%d %H:%M:%S'
    cron = b' cron['

    # Build the parsing model:

    service_children_disk_report = [
        FixedDataModelElement(
            'Space',
            b' Current Disk Data is: Filesystem     Type  Size  Used Avail Use%'
        ),
        DelimitedDataModelElement('Data', b'%'),
        AnyByteDataModelElement('Rest')
    ]

    service_children_login_details = [
        FixedDataModelElement('User', b'User '),
        DelimitedDataModelElement('Username', b' '),
        FixedWordlistDataModelElement('Status',
                                      [b' logged in', b' logged out']),
        OptionalMatchModelElement(
            'PastTime',
            SequenceModelElement('Time', [
                FixedDataModelElement('Blank', b' '),
                DecimalIntegerValueModelElement('Minutes'),
                FixedDataModelElement('Ago', b' minutes ago.')
            ]))
    ]

    service_children_cron_job = [
        DateTimeModelElement('DTM', date_format_string),
        FixedDataModelElement('UNameSpace1', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('UNameSpace2', b' '),
        DelimitedDataModelElement('User', b' '),
        FixedDataModelElement('Cron', cron),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Details', b']: Job `cron.daily` started.')
    ]

    service_children_random_time = [
        FixedDataModelElement('Space', b'Random: '),
        DecimalIntegerValueModelElement('Random')
    ]

    service_children_sensors = [
        SequenceModelElement('CPUTemp', [
            FixedDataModelElement('FixedTemp', b'CPU Temp: '),
            DecimalIntegerValueModelElement('Temp'),
            FixedDataModelElement('Degrees', b'\xc2\xb0C')
        ]),
        FixedDataModelElement('Space1', b', '),
        SequenceModelElement('CPUWorkload', [
            FixedDataModelElement('FixedWorkload', b'CPU Workload: '),
            DecimalIntegerValueModelElement('Workload'),
            FixedDataModelElement('Percent', b'%')
        ]),
        FixedDataModelElement('Space2', b', '),
        DateTimeModelElement('DTM', date_format_string)
    ]

    service_children_user_ip_address = [
        FixedDataModelElement('User', b'User '),
        DelimitedDataModelElement('Username', b' '),
        FixedDataModelElement('Action', b' changed IP address to '),
        IpAddressDataModelElement('IP')
    ]

    service_children_cron_job_announcement = [
        DateTimeModelElement('DTM', date_format_string),
        FixedDataModelElement('Space', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('Cron', cron),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Run', b']: Will run job `'),
        FixedWordlistDataModelElement(
            'CronType',
            [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']),
        FixedDataModelElement('Start Time', b'\' in 5 min.')
    ]

    service_children_cron_job_execution = [
        DateTimeModelElement('DTM', date_format_string),
        FixedDataModelElement('Space1', b' '),
        DelimitedDataModelElement('UName', b' '),
        FixedDataModelElement('Cron', cron),
        DecimalIntegerValueModelElement('JobNumber'),
        FixedDataModelElement('Job', b']: Job `'),
        FixedWordlistDataModelElement(
            'CronType',
            [b'cron.daily', b'cron.hourly', b'cron.monthly', b'cron.weekly']),
        FixedDataModelElement('Started', b'\' started')
    ]

    parsing_model = FirstMatchModelElement('model', [
        SequenceModelElement('CronAnnouncement',
                             service_children_cron_job_announcement),
        SequenceModelElement('CronExecution',
                             service_children_cron_job_execution),
        SequenceModelElement('DailyCron', service_children_cron_job),
        SequenceModelElement('DiskReport', service_children_disk_report),
        SequenceModelElement('LoginDetails', service_children_login_details),
        DecimalIntegerValueModelElement('Random'),
        SequenceModelElement('RandomTime', service_children_random_time),
        SequenceModelElement('Sensors', service_children_sensors),
        SequenceModelElement('IPAddresses', service_children_user_ip_address)
    ])

    # Some generic imports.
    from aminer.analysis import AtomFilters

    # Create all global handler lists here and append the real handlers later on.
    # Use this filter to distribute all atoms to the analysis handlers.
    atom_filter = AtomFilters.SubhandlerFilter(None)

    from aminer.analysis.TimestampCorrectionFilters import SimpleMonotonicTimestampAdjust
    simple_monotonic_timestamp_adjust = SimpleMonotonicTimestampAdjust(
        [atom_filter])
    analysis_context.register_component(
        simple_monotonic_timestamp_adjust,
        component_name="SimpleMonotonicTimestampAdjust")

    from aminer.events.StreamPrinterEventHandler import StreamPrinterEventHandler
    stream_printer_event_handler = StreamPrinterEventHandler(analysis_context)
    anomaly_event_handlers = [stream_printer_event_handler]

    # Now define the AtomizerFactory using the model. A simple line based one is usually sufficient.
    from aminer.input import SimpleByteStreamLineAtomizerFactory
    analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory(
        parsing_model, [simple_monotonic_timestamp_adjust],
        anomaly_event_handlers)

    # Just report all unparsed atoms to the event handlers.
    from aminer.input import SimpleUnparsedAtomHandler
    simple_unparsed_atom_handler = SimpleUnparsedAtomHandler(
        anomaly_event_handlers)
    atom_filter.add_handler(simple_unparsed_atom_handler,
                            stop_when_handled_flag=True)
    analysis_context.register_component(simple_unparsed_atom_handler,
                                        component_name="UnparsedHandler")

    from aminer.analysis.TimestampsUnsortedDetector import TimestampsUnsortedDetector
    timestamps_unsorted_detector = TimestampsUnsortedDetector(
        analysis_context.aminer_config, anomaly_event_handlers)
    atom_filter.add_handler(timestamps_unsorted_detector)
    analysis_context.register_component(
        timestamps_unsorted_detector,
        component_name="TimestampsUnsortedDetector")

    from aminer.analysis import Rules
    from aminer.analysis import AllowlistViolationDetector
    # This rule list should trigger, when the line does not look like: User root (logged in, logged out)
    # or User 'username' (logged in, logged out) x minutes ago.
    allowlist_rules = [
        Rules.OrMatchRule([
            Rules.AndMatchRule([
                Rules.PathExistsMatchRule(
                    '/model/LoginDetails/PastTime/Time/Minutes'),
                Rules.NegationMatchRule(
                    Rules.ValueMatchRule('/model/LoginDetails/Username',
                                         b'root'))
            ]),
            Rules.AndMatchRule([
                Rules.NegationMatchRule(
                    Rules.PathExistsMatchRule(
                        '/model/LoginDetails/PastTime/Time/Minutes')),
                Rules.PathExistsMatchRule('/model/LoginDetails')
            ]),
            Rules.NegationMatchRule(
                Rules.PathExistsMatchRule('/model/LoginDetails'))
        ])
    ]

    allowlist_violation_detector = AllowlistViolationDetector(
        analysis_context.aminer_config, allowlist_rules,
        anomaly_event_handlers)
    analysis_context.register_component(allowlist_violation_detector,
                                        component_name="Allowlist")
    atom_filter.add_handler(allowlist_violation_detector)

    from aminer.analysis import NewMatchPathDetector
    new_match_path_detector = NewMatchPathDetector(
        analysis_context.aminer_config,
        anomaly_event_handlers,
        auto_include_flag=True)
    analysis_context.register_component(new_match_path_detector,
                                        component_name="NewMatchPath")
    atom_filter.add_handler(new_match_path_detector)

    def tuple_transformation_function(match_value_list):
        """Only allow output of the EnhancedNewMatchPathValueComboDetector after every 10000th element."""
        extra_data = enhanced_new_match_path_value_combo_detector.known_values_dict.get(
            tuple(match_value_list))
        if extra_data is not None:
            mod = 10000
            if (extra_data[2] + 1) % mod == 0:
                enhanced_new_match_path_value_combo_detector.auto_include_flag = False
            else:
                enhanced_new_match_path_value_combo_detector.auto_include_flag = True
        return match_value_list

    from aminer.analysis.EnhancedNewMatchPathValueComboDetector import EnhancedNewMatchPathValueComboDetector
    enhanced_new_match_path_value_combo_detector = EnhancedNewMatchPathValueComboDetector(
        analysis_context.aminer_config,
        ['/model/DailyCron/UName', '/model/DailyCron/Job Number'],
        anomaly_event_handlers,
        auto_include_flag=True,
        tuple_transformation_function=tuple_transformation_function)
    analysis_context.register_component(
        enhanced_new_match_path_value_combo_detector,
        component_name="EnhancedNewValueCombo")
    atom_filter.add_handler(enhanced_new_match_path_value_combo_detector)

    from aminer.analysis.HistogramAnalysis import HistogramAnalysis, LinearNumericBinDefinition, ModuloTimeBinDefinition, \
        PathDependentHistogramAnalysis
    modulo_time_bin_definition = ModuloTimeBinDefinition(
        86400, 3600, 0, 1, 24, True)
    linear_numeric_bin_definition = LinearNumericBinDefinition(50, 5, 20, True)
    histogram_analysis = HistogramAnalysis(
        analysis_context.aminer_config,
        [('/model/RandomTime/Random', modulo_time_bin_definition),
         ('/model/Random', linear_numeric_bin_definition)], 10,
        anomaly_event_handlers)
    analysis_context.register_component(histogram_analysis,
                                        component_name="HistogramAnalysis")
    atom_filter.add_handler(histogram_analysis)

    path_dependent_histogram_analysis = PathDependentHistogramAnalysis(
        analysis_context.aminer_config, '/model/RandomTime',
        modulo_time_bin_definition, 10, anomaly_event_handlers)
    analysis_context.register_component(
        path_dependent_histogram_analysis,
        component_name="PathDependentHistogramAnalysis")
    atom_filter.add_handler(path_dependent_histogram_analysis)

    from aminer.analysis.MatchValueAverageChangeDetector import MatchValueAverageChangeDetector
    match_value_average_change_detector = MatchValueAverageChangeDetector(
        analysis_context.aminer_config, anomaly_event_handlers, None,
        ['/model/Random'], 100, 10)
    analysis_context.register_component(
        match_value_average_change_detector,
        component_name="MatchValueAverageChange")
    atom_filter.add_handler(match_value_average_change_detector)

    import sys
    from aminer.analysis.MatchValueStreamWriter import MatchValueStreamWriter
    match_value_stream_writer = MatchValueStreamWriter(sys.stdout, [
        '/model/Sensors/CPUTemp', '/model/Sensors/CPUWorkload',
        '/model/Sensors/DTM'
    ], b';', b'')
    analysis_context.register_component(
        match_value_stream_writer, component_name="MatchValueStreamWriter")
    atom_filter.add_handler(match_value_stream_writer)

    from aminer.analysis.NewMatchPathValueComboDetector import NewMatchPathValueComboDetector
    new_match_path_value_combo_detector = NewMatchPathValueComboDetector(
        analysis_context.aminer_config,
        ['/model/IPAddresses/Username', '/model/IPAddresses/IP'],
        anomaly_event_handlers,
        auto_include_flag=True)
    analysis_context.register_component(
        new_match_path_value_combo_detector,
        component_name="NewMatchPathValueCombo")
    atom_filter.add_handler(new_match_path_value_combo_detector)

    from aminer.analysis.NewMatchPathValueDetector import NewMatchPathValueDetector
    new_match_path_value_detector = NewMatchPathValueDetector(
        analysis_context.aminer_config,
        ['/model/DailyCron/JobNumber', '/model/IPAddresses/Username'],
        anomaly_event_handlers,
        auto_include_flag=True)
    analysis_context.register_component(new_match_path_value_detector,
                                        component_name="NewMatchPathValue")
    atom_filter.add_handler(new_match_path_value_detector)

    from aminer.analysis.MissingMatchPathValueDetector import MissingMatchPathValueDetector
    missing_match_path_value_detector = MissingMatchPathValueDetector(
        analysis_context.aminer_config,
        '/model/DiskReport/Space',
        anomaly_event_handlers,
        auto_include_flag=True,
        default_interval=2,
        realert_interval=5)
    analysis_context.register_component(missing_match_path_value_detector,
                                        component_name="MissingMatch")
    atom_filter.add_handler(missing_match_path_value_detector)

    from aminer.analysis.TimeCorrelationDetector import TimeCorrelationDetector
    time_correlation_detector = TimeCorrelationDetector(
        analysis_context.aminer_config,
        anomaly_event_handlers,
        2,
        min_rule_attributes=1,
        max_rule_attributes=5,
        record_count_before_event=70000,
        output_log_line=True)
    analysis_context.register_component(
        time_correlation_detector, component_name="TimeCorrelationDetector")
    atom_filter.add_handler(time_correlation_detector)

    from aminer.analysis.TimeCorrelationViolationDetector import TimeCorrelationViolationDetector, CorrelationRule, EventClassSelector
    cron_job_announcement = CorrelationRule(
        'CronJobAnnouncement',
        5,
        6,
        max_artefacts_a_for_single_b=1,
        artefact_match_parameters=[('/model/CronAnnouncement/JobNumber',
                                    '/model/CronExecution/JobNumber')])
    a_class_selector = EventClassSelector('Announcement',
                                          [cron_job_announcement], None)
    b_class_selector = EventClassSelector('Execution', None,
                                          [cron_job_announcement])
    rules = [
        Rules.PathExistsMatchRule('/model/CronAnnouncement/Run',
                                  a_class_selector),
        Rules.PathExistsMatchRule('/model/CronExecution/Job', b_class_selector)
    ]

    time_correlation_violation_detector = TimeCorrelationViolationDetector(
        analysis_context.aminer_config, rules, anomaly_event_handlers)
    analysis_context.register_component(
        time_correlation_violation_detector,
        component_name="TimeCorrelationViolationDetector")
    atom_filter.add_handler(time_correlation_violation_detector)
def build_analysis_pipeline(analysis_context):
    """
    Define the function to create pipeline for parsing the log data.
    It has also to define an AtomizerFactory to instruct AMiner how to process incoming data streams to create log atoms from them.
    """
    # Build the parsing model:
    from aminer.parsing import SequenceModelElement

    import ApacheAccessModel
    apache_access_model = ApacheAccessModel.get_model()

    parsing_model = SequenceModelElement('model', [apache_access_model])

    # Some generic imports.
    from aminer.analysis import AtomFilters

    # Create all global handler lists here and append the real handlers
    # later on.
    # Use this filter to distribute all atoms to the analysis handlers.
    atom_filter = AtomFilters.SubhandlerFilter(None)
    anomaly_event_handlers = []

    # Now define the AtomizerFactory using the model. A simple line
    # based one is usually sufficient.
    from aminer.input import SimpleByteStreamLineAtomizerFactory
    analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory(
        parsing_model, [atom_filter],
        anomaly_event_handlers,
        default_timestamp_paths='/model/accesslog/time')

    # Just report all unparsed atoms to the event handlers.
    from aminer.input import SimpleUnparsedAtomHandler
    atom_filter.add_handler(SimpleUnparsedAtomHandler(anomaly_event_handlers),
                            stop_when_handled_flag=True)

    from aminer.analysis import NewMatchPathDetector
    new_match_path_detector = NewMatchPathDetector(
        analysis_context.aminer_config,
        anomaly_event_handlers,
        auto_include_flag=learn_mode)
    analysis_context.register_component(new_match_path_detector,
                                        component_name=None)
    atom_filter.add_handler(new_match_path_detector)

    # Check if status-code changed
    from aminer.analysis import NewMatchPathValueDetector
    new_match_path_value_detector = NewMatchPathValueDetector(
        analysis_context.aminer_config, ["/model/accesslog/status"],
        anomaly_event_handlers,
        auto_include_flag=learn_mode)
    analysis_context.register_component(new_match_path_value_detector,
                                        component_name=None)
    atom_filter.add_handler(new_match_path_value_detector)

    # Check if HTTP-Method for a HTTP-Request has changed
    from aminer.analysis import NewMatchPathValueComboDetector
    new_match_path_value_combo_detector = NewMatchPathValueComboDetector(
        analysis_context.aminer_config,
        ["/model/accesslog/request", "/model/accesslog/method"],
        anomaly_event_handlers,
        auto_include_flag=learn_mode)
    analysis_context.register_component(new_match_path_value_combo_detector,
                                        component_name=None)
    atom_filter.add_handler(new_match_path_value_combo_detector)

    # Check if HTTP-Statuscode for a HTTP-Request has changed
    new_match_path_value_combo_detector2 = NewMatchPathValueComboDetector(
        analysis_context.aminer_config,
        ["/model/accesslog/request", "/model/accesslog/status"],
        anomaly_event_handlers,
        auto_include_flag=learn_mode)
    analysis_context.register_component(new_match_path_value_combo_detector2,
                                        component_name=None)
    atom_filter.add_handler(new_match_path_value_combo_detector2)

    # Add stdout stream printing for debugging, tuning.
    from aminer.events import StreamPrinterEventHandler
    anomaly_event_handlers.append(StreamPrinterEventHandler(analysis_context))
Beispiel #7
0
def build_analysis_pipeline(analysis_context):
    """Define the function to create pipeline for parsing the log
    data. It has also to define an AtomizerFactory to instruct AMiner
    how to process incoming data streams to create log atoms from
    them."""
    # skipcq: PYL-W0611
    import importlib
    # skipcq: PYL-W0611
    import configparser
    # skipcq: PYL-W0611
    import sys
#  import json
#  from pprint import pprint

    parserModelDict = {}
    start = None
    wscount = 0
    whitespace_str = b' '

    # We might be able to remove this and us it like the config_properties
    # skipcq: PYL-W0603
    global yamldata
    for item in yamldata['Parser']:
        if item['id'] == 'START':
            start = item
            continue
        if item['type'].endswith('ModelElement') and item['id'] != 'START':
            func = getattr(__import__("aminer.parsing", fromlist=[item['type']]), item['type'])
            if 'args' in item:
                if isinstance(item['args'], list):
                    # encode string to bytearray
                    for j in range(len(item['args'])):
                        item['args'][j] = item['args'][j].encode()
                    parserModelDict[item['id']] = func(item['name'], item['args'])
                else:
                    parserModelDict[item['id']] = func(item['name'], item['args'].encode())
            else:
                parserModelDict[item['id']] = func(item['name'])
        else:
            # skipcq: PTC-W0034
            func = getattr(__import__(item['type']), 'get_model')
            parserModelDict[item['id']] = func()

    argslist = []
    if start['type'].endswith('ModelElement'):
        # skipcq: PTC-W0034
        func = getattr(__import__("aminer.parsing", fromlist=[start['type']]), start['type'])
    else:
        # skipcq: PTC-W0034
        func = getattr(__import__(start['type']), 'get_model')
    if 'args' in start:
        if isinstance(start['args'], list):
            for i in start['args']:
                if i == 'WHITESPACE':
                    from aminer.parsing import FixedDataModelElement
                    sp = 'sp%d' % wscount
                    argslist.append(FixedDataModelElement(sp, whitespace_str))
                    wscount += 1
                else:
                    argslist.append(parserModelDict[i])
            parsing_model = func(start['name'], argslist)
        else:
            parsing_model = func(start['name'], [parserModelDict[start['args']]])
    else:
        parsing_model = func()

# Some generic imports.
    from aminer.analysis import AtomFilters

# Create all global handler lists here and append the real handlers
# later on.
# Use this filter to distribute all atoms to the analysis handlers.
    atomFilter = AtomFilters.SubhandlerFilter(None)
    anomaly_event_handlers = []

# Now define the AtomizerFactory using the model. A simple line
# based one is usually sufficient.
    from aminer.input import SimpleByteStreamLineAtomizerFactory
    if yamldata['Input']['MultiSource'] is True:
        from aminer.input import SimpleMultisourceAtomSync
        analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory(
            parsing_model, [SimpleMultisourceAtomSync([atomFilter], sync_wait_time=5)],
            anomaly_event_handlers, default_timestamp_paths=yamldata['Input']['TimestampPath'])
    else:
        analysis_context.atomizer_factory = SimpleByteStreamLineAtomizerFactory(
            parsing_model, [atomFilter], anomaly_event_handlers,
            default_timestamp_paths=yamldata['Input']['TimestampPath'])

# Just report all unparsed atoms to the event handlers.
    if yamldata['Input']['Verbose'] is True:
        from aminer.input import VerboseUnparsedAtomHandler
        atomFilter.add_handler(
            VerboseUnparsedAtomHandler(anomaly_event_handlers, parsing_model),
            stop_when_handled_flag=True)
    else:
        from aminer.input import SimpleUnparsedAtomHandler
        atomFilter.add_handler(
            SimpleUnparsedAtomHandler(anomaly_event_handlers),
            stop_when_handled_flag=True)

    from aminer.analysis import NewMatchPathDetector
    if 'LearnMode' in yamldata:
        learn = yamldata['LearnMode']
    else:
        learn = True
    nmpd = NewMatchPathDetector(
        analysis_context.aminer_config, anomaly_event_handlers, auto_include_flag=learn)
    analysis_context.register_component(nmpd, component_name=None)
    atomFilter.add_handler(nmpd)

    for item in yamldata['Analysis']:
        if item['id'] == 'None':
            compName = None
        else:
            compName = item['id']
        if 'LearnMode' in yamldata:
            learn = yamldata['LearnMode']
        else:
            learn = item['learnMode']
        func = getattr(__import__("aminer.analysis", fromlist=[item['type']]), item['type'])
        if item['type'] == 'NewMatchPathValueDetector':
            tmpAnalyser = func(
                analysis_context.aminer_config,
                item['paths'], anomaly_event_handlers, auto_include_flag=learn,
                persistence_id=item['persistence_id'],
                output_log_line=item['output_logline'])
        elif item['type'] == 'NewMatchPathValueComboDetector':
            tmpAnalyser = func(
                analysis_context.aminer_config, item['paths'],
                anomaly_event_handlers, auto_include_flag=learn,
                persistence_id=item['persistence_id'],
                allow_missing_values_flag=item['allow_missing_values'],
                output_log_line=item['output_logline'])
        else:
            tmpAnalyser = func(
                analysis_context.aminer_config,
                item['paths'], anomaly_event_handlers, auto_include_flag=learn)
        analysis_context.register_component(tmpAnalyser, component_name=compName)
        atomFilter.add_handler(tmpAnalyser)

    try:
        for item in yamldata['EventHandlers']:
            func = getattr(__import__("aminer.events", fromlist=[item['type']]), item['type'])
            ctx = None
            if item['type'] == 'StreamPrinterEventHandler':
                if item['json'] is True:
                    from aminer.events import JsonConverterHandler
                    ctx = JsonConverterHandler([func(analysis_context)], analysis_context)
                else:
                    ctx = func(analysis_context)
#           if item['type'] == 'KafkaEventHandler':
#             try:
#               item['args'][0]
#             except:
#               raise ValueError("Kafka-Topic not defined")
#             try:
#               kafkaconfig = item['args'][1]
#             except:
#               kafkaconfig = '/etc/aminer/kafka-client.conf'
#             config = configparser.ConfigParser()
#             config.read(kafkaconfig)
#             options = dict(config.items("DEFAULT"))
#             for key, val in options.items():
#               try:
#                 if key == "sasl_plain_username":
#                   continue
#                 options[key] = int(val)
#               except:
#                 pass
#             kafkaEventHandler = func(analysis_context.aminer_config, item['args'][0], options)
#             from aminer.events import JsonConverterHandler
#             anomaly_event_handlers.append(
#                 JsonConverterHandler(analysis_context.aminer_config, messageQueueEventHandlers,
#                 analysis_context, learningMode))
#           else:
            if ctx is None:
                ctx = func(analysis_context)
            anomaly_event_handlers.append(ctx)

    except KeyError:
        # Add stdout stream printing for debugging, tuning.
        from aminer.events import StreamPrinterEventHandler
        anomaly_event_handlers.append(StreamPrinterEventHandler(analysis_context))
Beispiel #8
0
def buildAnalysisPipeline(analysisContext):
    """Define the function to create pipeline for parsing the log
  data. It has also to define an AtomizerFactory to instruct AMiner
  how to process incoming data streams to create log atoms from
  them."""
    # Build the parsing model first:
    from aminer.parsing import FirstMatchModelElement
    from aminer.parsing import SequenceModelElement

    serviceChildren = []

    import CronParsingModel
    serviceChildren.append(CronParsingModel.getModel())

    import EximParsingModel
    serviceChildren.append(EximParsingModel.getModel())

    import RsyslogParsingModel
    serviceChildren.append(RsyslogParsingModel.getModel())

    import SyslogPreambleModel
    syslogPreambleModel = SyslogPreambleModel.getModel()

    parsingModel = SequenceModelElement('model', [
        syslogPreambleModel,
        FirstMatchModelElement('services', serviceChildren)
    ])

    # Some generic imports.
    from aminer.analysis import AtomFilters
    from aminer.analysis import Rules

    # Create all global handler lists here and append the real handlers
    # later on.
    # Use this filter to distribute all atoms to the analysis handlers.
    atomFilter = AtomFilters.SubhandlerFilter(None)
    anomalyEventHandlers = []

    # Now define the AtomizerFactory using the model. A simple line
    # based one is usually sufficient.
    from aminer.input import SimpleByteStreamLineAtomizerFactory
    analysisContext.atomizerFactory = SimpleByteStreamLineAtomizerFactory(
        parsingModel, [atomFilter],
        anomalyEventHandlers,
        defaultTimestampPath='/model/syslog/time')

    # Always report the unparsed lines: a part of the parsing model
    # seems to be missing or wrong.
    from aminer.input import SimpleUnparsedAtomHandler
    atomFilter.addHandler(SimpleUnparsedAtomHandler(anomalyEventHandlers),
                          stopWhenHandledFlag=True)

    # Report new parsing model path values. Those occurr when a line
    # with new structural properties was parsed.
    from aminer.analysis import NewMatchPathDetector
    newMatchPathDetector = NewMatchPathDetector(analysisContext.aminerConfig,
                                                anomalyEventHandlers,
                                                autoIncludeFlag=True)
    analysisContext.registerComponent(newMatchPathDetector,
                                      componentName='DefaultMatchPathDetector')
    atomFilter.addHandler(newMatchPathDetector)

    # Run a whitelisting over the parsed lines.
    from aminer.analysis import WhitelistViolationDetector
    violationAction = Rules.EventGenerationMatchAction(
        'Analysis.GenericViolation', 'Violation detected',
        anomalyEventHandlers)
    whitelistRules = []
    # Filter out things so bad, that we do not want to accept the
    # risk, that a too broad whitelisting rule will accept the data
    # later on.
    whitelistRules.append(
        Rules.ValueMatchRule('/model/services/cron/msgtype/exec/user',
                             'hacker', violationAction))
    # Ignore Exim queue run start/stop messages
    whitelistRules.append(
        Rules.PathExistsMatchRule('/model/services/exim/msg/queue/pid'))
    # Ignore all ntpd messages for now.
    whitelistRules.append(Rules.PathExistsMatchRule('/model/services/ntpd'))
    # Add a debugging rule in the middle to see everything not whitelisted
    # up to this point.
    whitelistRules.append(Rules.DebugMatchRule(False))
    # Ignore hourly cronjobs, but only when started at expected time
    # and duration is not too long.
    whitelistRules.append(
        Rules.AndMatchRule([
            Rules.ValueMatchRule(
                '/model/services/cron/msgtype/exec/command',
                '(   cd / && run-parts --report /etc/cron.hourly)'),
            Rules.ModuloTimeMatchRule('/model/syslog/time', 3600, 17 * 60,
                                      17 * 60 + 5)
        ]))

    atomFilter.addHandler(
        WhitelistViolationDetector(whitelistRules, anomalyEventHandlers))

    # Include the e-mail notification handler only if the configuration
    # parameter was set.
    from aminer.events import DefaultMailNotificationEventHandler
    if DefaultMailNotificationEventHandler.CONFIG_KEY_MAIL_TARGET_ADDRESS in analysisContext.aminerConfig.configProperties:
        mailNotificationHandler = DefaultMailNotificationEventHandler(
            analysisContext.aminerConfig)
        analysisContext.registerComponent(mailNotificationHandler,
                                          componentName=None)
        anomalyEventHandlers.append(mailNotificationHandler)


# Add stdout stream printing for debugging, tuning.
    from aminer.events import StreamPrinterEventHandler
    anomalyEventHandlers.append(
        StreamPrinterEventHandler(analysisContext.aminerConfig))