Beispiel #1
0
    def test_resSeqMap3(self):
        # See if we can sort out the indexing between the native and model
        
        nativePdb = os.path.join(self.testfiles_dir,"2UUI.pdb")
        modelPdb = os.path.join(self.testfiles_dir,"2UUI_S_00000001.pdb")
        
        chainA = "2UUI_A.pdb"
        pdb_edit.extract_chain( nativePdb, chainA, chainID='A' )
        chainAstd = "2UUI_A_std.pdb"
        pdb_edit.standardise(chainA, chainAstd)
        
        resSeqMap = residue_map.residueSequenceMap( chainA, modelPdb )
        
        self.assertEqual( 156, resSeqMap._lenMatch() )

        
        nativeMask = [ False ] * 155 + [ True ]
        self.assertEqual( resSeqMap.refCAlphaMask, nativeMask)
        
        self.assertEqual( resSeqMap.ref2target(10), 16  )
        self.assertEqual( resSeqMap.target2ref(155), 149 )
        
        # Check ends match up
        m1 = resSeqMap.targetResSeq[ resSeqMap.targetOffset ]
        n1 = resSeqMap.target2ref( m1 )
        self.assertEqual( m1, resSeqMap.ref2target(n1) )
        re = resSeqMap.refResSeq[ resSeqMap.refOffset + resSeqMap.lenMatch - 1  ]
        self.assertEqual( resSeqMap.ref2target( re ), resSeqMap.targetResSeq[ resSeqMap.targetOffset + resSeqMap.lenMatch - 1  ] )
        
        os.unlink( chainA )
        os.unlink( chainAstd )
Beispiel #2
0
    def test_resSeqMap3(self):
        # See if we can sort out the indexing between the native and model

        nativePdb = os.path.join(self.testfiles_dir, "2UUI.pdb")
        modelPdb = os.path.join(self.testfiles_dir, "2UUI_S_00000001.pdb")

        chainA = "2UUI_A.pdb"
        pdb_edit.extract_chain(nativePdb, chainA, chainID='A')
        chainAstd = "2UUI_A_std.pdb"
        pdb_edit.standardise(chainA, chainAstd)

        resSeqMap = residue_map.residueSequenceMap(chainA, modelPdb)

        self.assertEqual(156, resSeqMap._lenMatch())

        nativeMask = [False] * 155 + [True]
        self.assertEqual(resSeqMap.refCAlphaMask, nativeMask)

        self.assertEqual(resSeqMap.ref2target(10), 16)
        self.assertEqual(resSeqMap.target2ref(155), 149)

        # Check ends match up
        m1 = resSeqMap.targetResSeq[resSeqMap.targetOffset]
        n1 = resSeqMap.target2ref(m1)
        self.assertEqual(m1, resSeqMap.ref2target(n1))
        re = resSeqMap.refResSeq[resSeqMap.refOffset + resSeqMap.lenMatch - 1]
        self.assertEqual(
            resSeqMap.ref2target(re), resSeqMap.targetResSeq[resSeqMap.targetOffset + resSeqMap.lenMatch - 1]
        )

        os.unlink(chainA)
        os.unlink(chainAstd)
Beispiel #3
0
    def test_resSeqMap4(self):
        # See if we can sort out the indexing between the native and model

        nativePdb = os.path.join(self.testfiles_dir, "1K33.pdb")
        modelPdb = os.path.join(self.testfiles_dir, "1K33_S_00000001.pdb")

        nativePdbStd = "1K33_std.pdb"
        pdb_edit.standardise(nativePdb, nativePdbStd)

        nativeInfo = pdb_edit.get_info(nativePdbStd)
        modelInfo = pdb_edit.get_info(modelPdb)

        resSeqMap = residue_map.residueSequenceMap()
        resSeqMap.fromInfo(nativeInfo, 'A', modelInfo, 'A')

        os.unlink(nativePdbStd)
Beispiel #4
0
 def test_resSeqMap4(self):
     # See if we can sort out the indexing between the native and model
     
     
     nativePdb = os.path.join(self.testfiles_dir,"1K33.pdb")
     modelPdb = os.path.join(self.testfiles_dir,"1K33_S_00000001.pdb")
     
     nativePdbStd = "1K33_std.pdb"
     pdb_edit.standardise( nativePdb, nativePdbStd )
     
     nativeInfo = pdb_edit.get_info( nativePdbStd )
     modelInfo = pdb_edit.get_info( modelPdb )
     
     resSeqMap = residue_map.residueSequenceMap( )
     resSeqMap.fromInfo( nativeInfo, 'A', modelInfo, 'A' )
     
     os.unlink( nativePdbStd )
Beispiel #5
0
    def generate_ensembles(self,
                           models,
                           ensembles_directory=None,
                           nproc=None,
                           percent_truncation=None,
                           percent_fixed_intervals=None,
                           side_chain_treatments=SIDE_CHAIN_TREATMENTS,
                           truncation_method=None,
                           truncation_pruning=None,
                           truncation_scorefile=None,
                           truncation_scorefile_header=None):
        """Method to generate ensembles from a single structure based on 
        residue scores"""

        if not truncation_method:
            truncation_method = self.truncation_method
        if not truncation_pruning:
            truncation_pruning = self.truncation_pruning
        if not truncation_scorefile:
            truncation_scorefile = self.truncation_scorefile

        if len(models) > 1:
            msg = "More than 1 structure provided"
            logger.critical(msg)
            raise RuntimeError(msg)

        if len(truncation_scorefile_header) < 2:
            msg = "At least two header options for scorefile are required"
            logger.critical(msg)
            raise RuntimeError(msg)

        # standardise the structure
        std_models_dir = os.path.join(self.work_dir, "std_models")
        os.mkdir(std_models_dir)

        std_model = ample_util.filename_append(models[0], 'std',
                                               std_models_dir)
        pdb_edit.standardise(pdbin=models[0],
                             pdbout=std_model,
                             del_hetatm=True)
        std_models = [std_model]
        logger.info('Standardised input model: %s', std_models[0])

        # Create final ensembles directory
        if not os.path.isdir(self.ensembles_directory):
            os.mkdir(self.ensembles_directory)

        truncate_dir = os.path.join(self.work_dir, "single_truncate")
        if not os.path.isdir(truncate_dir):
            os.mkdir(truncate_dir)

        # Read all the scores into a per residue dictionary
        assert len(truncation_scorefile_header) > 1, \
            "At least two column labels are required"
        residue_scores = self._read_scorefile(truncation_scorefile)
        residue_key = truncation_scorefile_header.pop(0).lower()
        truncation_scorefile_header = map(str.strip,
                                          truncation_scorefile_header)
        assert all(h in residue_scores[0] for h in truncation_scorefile_header), \
            "Not all column labels are in your CSV file"

        self.ensembles = []
        for score_key in truncation_scorefile_header:
            zipped_scores = self._generate_residue_scorelist(
                residue_key, score_key, residue_scores)

            score_truncate_dir = os.path.join(truncate_dir,
                                              "{}".format(score_key))
            if not os.path.isdir(score_truncate_dir):
                os.mkdir(score_truncate_dir)

            self.truncator = truncation_util.Truncator(
                work_dir=score_truncate_dir)
            self.truncator.theseus_exe = self.theseus_exe
            for truncation in self.truncator.truncate_models(
                    models=std_models,
                    truncation_method=truncation_method,
                    percent_truncation=percent_truncation,
                    percent_fixed_intervals=percent_fixed_intervals,
                    truncation_pruning=truncation_pruning,
                    residue_scores=zipped_scores):

                pre_ensemble = _ensembler.Ensemble()
                pre_ensemble.num_residues = truncation.num_residues
                pre_ensemble.truncation_dir = truncation.directory
                pre_ensemble.truncation_level = truncation.level
                pre_ensemble.truncation_method = truncation.method
                pre_ensemble.truncation_percent = truncation.percent
                pre_ensemble.truncation_residues = truncation.residues
                pre_ensemble.truncation_variance = truncation.variances
                pre_ensemble.truncation_score_key = score_key.lower()
                pre_ensemble.pdb = truncation.models[0]

                for ensemble in self.edit_side_chains(pre_ensemble,
                                                      side_chain_treatments,
                                                      single_structure=True):
                    self.ensembles.append(ensemble)

        return self.ensembles
Beispiel #6
0
def analysePdb(amoptd):
    """Collect data on the native pdb structure"""

    nativePdb = fixpath(amoptd['native_pdb'])
    nativePdbInfo = pdb_edit.get_info(nativePdb)

    # number atoms/residues
    natoms, nresidues = pdb_edit.num_atoms_and_residues(nativePdb)

    # Get information on the origins for this spaceGroup
    try:
        originInfo = pdb_model.OriginInfo(
            spaceGroupLabel=nativePdbInfo.crystalInfo.spaceGroup)
    except Exception:
        originInfo = None

    # Do this here as a bug in pdbcur can knacker the CRYST1 data
    amoptd['native_pdb_code'] = nativePdbInfo.pdbCode
    amoptd['native_pdb_title'] = nativePdbInfo.title
    amoptd['native_pdb_resolution'] = nativePdbInfo.resolution
    amoptd['native_pdb_solvent_content'] = nativePdbInfo.solventContent
    amoptd[
        'native_pdb_matthews_coefficient'] = nativePdbInfo.matthewsCoefficient
    if not originInfo:
        space_group = "P1"
    else:
        space_group = originInfo.spaceGroup()
    amoptd['native_pdb_space_group'] = space_group
    amoptd['native_pdb_num_atoms'] = natoms
    amoptd['native_pdb_num_residues'] = nresidues

    # First check if the native has > 1 model and extract the first if so
    if len(nativePdbInfo.models) > 1:
        logger.info("nativePdb has > 1 model - using first")
        nativePdb1 = ample_util.filename_append(filename=nativePdb,
                                                astr="model1",
                                                directory=fixpath(
                                                    amoptd['work_dir']))
        pdb_edit.extract_model(nativePdb,
                               nativePdb1,
                               modelID=nativePdbInfo.models[0].serial)
        nativePdb = nativePdb1

    # Standardise the PDB to rename any non-standard AA, remove solvent etc
    nativePdbStd = ample_util.filename_append(filename=nativePdb,
                                              astr="std",
                                              directory=fixpath(
                                                  amoptd['work_dir']))
    pdb_edit.standardise(nativePdb, nativePdbStd, del_hetatm=True)
    nativePdb = nativePdbStd

    # Get the new Info about the native
    nativePdbInfo = pdb_edit.get_info(nativePdb)

    # For maxcluster comparsion of shelxe model we need a single chain from the native so we get this here
    if len(nativePdbInfo.models[0].chains) > 1:
        chainID = nativePdbInfo.models[0].chains[0]
        nativeChain1 = ample_util.filename_append(filename=nativePdbInfo.pdb,
                                                  astr="chain1",
                                                  directory=fixpath(
                                                      amoptd['work_dir']))
        pdb_edit.to_single_chain(nativePdbInfo.pdb, nativeChain1)
    else:
        nativeChain1 = nativePdbInfo.pdb

    # Additional data
    amoptd['native_pdb_num_chains'] = len(nativePdbInfo.models[0].chains)
    amoptd['native_pdb_info'] = nativePdbInfo
    amoptd['native_pdb_std'] = nativePdbStd
    amoptd['native_pdb_1chain'] = nativeChain1
    amoptd['native_pdb_origin_info'] = originInfo

    return
Beispiel #7
0
    def generate_ensembles(self,
                           models,
                           alignment_file=None,
                           homolog_aligner=None,
                           percent_fixed_intervals=None,
                           percent_truncation=None,
                           side_chain_treatments=SIDE_CHAIN_TREATMENTS,
                           truncation_method=None,
                           **kwargs):
        
        if not percent_truncation:
            percent_truncation = self.percent_truncation
        if not truncation_method:
            truncation_method = self.truncation_method
        
        if not len(models):
            msg = "Cannot find any models for ensembling!"
            raise RuntimeError(msg) 
        if not all([os.path.isfile(m) for m in models]):
            msg = "Problem reading models given to Ensembler: {0}".format(models)
            raise RuntimeError(msg)
        
        logger.info('Ensembling models in directory: %s', self.work_dir)
    
        # Create final ensembles directory
        if not os.path.isdir(self.ensembles_directory):
            os.mkdir(self.ensembles_directory)
        
        # standardise all the models
        std_models_dir = os.path.join(self.work_dir, "std_models")
        os.mkdir(std_models_dir)
        std_models = []
        for m in models:
            std_model = ample_util.filename_append(m, 'std', std_models_dir)
            pdb_edit.standardise(pdbin=m, pdbout=std_model, del_hetatm=True)
            std_models.append(std_model)
        
        # Get a structural alignment between the different models
        if not alignment_file:
            if homolog_aligner == 'mustang':
                logger.info("Generating alignment file with mustang_exe: %s", self.mustang_exe)
                alignment_file = align_mustang(std_models, mustang_exe=self.mustang_exe, work_dir=self.work_dir)
            elif homolog_aligner == 'gesamt':
                logger.info("Generating alignment file with gesamt_exe: %s", self.gesamt_exe)
                alignment_file = align_gesamt(std_models, gesamt_exe=self.gesamt_exe, work_dir=self.work_dir)
            else:
                msg = "Unknown homolog_aligner: {0}".format(homolog_aligner)
                raise RuntimeError(msg)
            logger.info("Generated alignment file: %s", alignment_file)
        else:
            logger.info("Using alignment file: %s", alignment_file)
        
        truncate_dir = os.path.join(self.work_dir,"homolog_truncate")
        if not os.path.isdir(truncate_dir): os.mkdir(truncate_dir)
            
        # Now truncate and create ensembles - as standard ample, but with no subclustering
        self.ensembles = []
        self.truncator = truncation_util.Truncator(work_dir=truncate_dir)
        self.truncator.theseus_exe = self.theseus_exe
        for truncation in self.truncator.truncate_models(models=std_models,
                                                         truncation_method=truncation_method,
                                                         percent_fixed_intervals=percent_fixed_intervals,
                                                         percent_truncation=percent_truncation,
                                                         truncation_pruning=None,
                                                         homologs=True,
                                                         alignment_file=alignment_file):
            ensemble_dir = os.path.join(truncation.directory, "ensemble_{0}".format(truncation.level))
            os.mkdir(ensemble_dir)
            os.chdir(ensemble_dir)
             
            # Need to create an alignment file for theseus
            basename = "e{0}".format(truncation.level)
            superposed_models = self.superpose_models(truncation.models, basename=basename, work_dir=ensemble_dir, homologs=True)
            if not superposed_models:
                logger.critical("Skipping ensemble %s due to error with Theseus", basename)
                continue
            
            # Create Ensemble object
            pre_ensemble = _ensembler.Ensemble()
            pre_ensemble.num_residues = truncation.num_residues
            pre_ensemble.truncation_dir = truncation.directory
            pre_ensemble.truncation_level = truncation.level
            pre_ensemble.truncation_method = truncation.method
            pre_ensemble.truncation_percent = truncation.percent
            pre_ensemble.truncation_residues = truncation.residues
            pre_ensemble.truncation_variance = truncation.variances
            pre_ensemble.pdb = superposed_models

            for ensemble in self.edit_side_chains(pre_ensemble,
                                                  side_chain_treatments,
                                                  homologs=True):
                self.ensembles.append(ensemble)
                
        return self.ensembles
Beispiel #8
0
    def generate_ensembles(self,
                           models,
                           ensembles_directory=None,
                           nproc=None,
                           percent_truncation=None,
                           percent_fixed_intervals=None,
                           side_chain_treatments=SIDE_CHAIN_TREATMENTS,
                           truncation_method=None,
                           truncation_pruning=None,
                           truncation_scorefile=None,
                           truncation_scorefile_header=None):
        """Method to generate ensembles from a single structure based on 
        residue scores"""

        if not truncation_method:
            truncation_method = self.truncation_method
        if not truncation_pruning:
            truncation_pruning = self.truncation_pruning
        if not truncation_scorefile:
            truncation_scorefile = self.truncation_scorefile

        if len(models) > 1:
            msg = "More than 1 structure provided"
            logger.critical(msg)
            raise RuntimeError(msg)

        if len(truncation_scorefile_header) < 2:
            msg = "At least two header options for scorefile are required"
            logger.critical(msg)
            raise RuntimeError(msg)

        # standardise the structure
        std_models_dir = os.path.join(self.work_dir, "std_models")
        os.mkdir(std_models_dir)

        std_model = ample_util.filename_append(models[0], 'std',
                                               std_models_dir)
        pdb_edit.standardise(pdbin=models[0], pdbout=std_model,
                             del_hetatm=True)
        std_models = [std_model]
        logger.info('Standardised input model: %s', std_models[0])

        # Create final ensembles directory
        if not os.path.isdir(self.ensembles_directory):
            os.mkdir(self.ensembles_directory)

        truncate_dir = os.path.join(self.work_dir, "single_truncate")
        if not os.path.isdir(truncate_dir):
            os.mkdir(truncate_dir)

        # Read all the scores into a per residue dictionary
        assert len(truncation_scorefile_header) > 1, \
            "At least two column labels are required"
        residue_scores = self._read_scorefile(truncation_scorefile)
        residue_key = truncation_scorefile_header.pop(0)
        truncation_scorefile_header = map(str.strip,
                                          truncation_scorefile_header)
        assert all(h in residue_scores[0] for h in truncation_scorefile_header), \
            "Not all column labels are in your CSV file"
        self.ensembles = []
        for score_key in truncation_scorefile_header:
            zipped_scores = self._generate_residue_scorelist(residue_key,
                                                             score_key,
                                                             residue_scores)
            score_truncate_dir = os.path.join(truncate_dir,
                                              "{}".format(score_key))
            if not os.path.isdir(score_truncate_dir):
                os.mkdir(score_truncate_dir)

            self.truncator = truncation_util.Truncator(
                work_dir=score_truncate_dir)
            self.truncator.theseus_exe = self.theseus_exe
            for truncation in self.truncator.truncate_models(models=std_models,
                                                             truncation_method=truncation_method,
                                                             percent_truncation=percent_truncation,
                                                             percent_fixed_intervals=percent_fixed_intervals,
                                                             truncation_pruning=truncation_pruning,
                                                             residue_scores=zipped_scores):

                pre_ensemble = _ensembler.Ensemble()
                pre_ensemble.num_residues = truncation.num_residues
                pre_ensemble.truncation_dir = truncation.directory
                pre_ensemble.truncation_level = truncation.level
                pre_ensemble.truncation_method = truncation.method
                pre_ensemble.truncation_percent = truncation.percent
                pre_ensemble.truncation_residues = truncation.residues
                pre_ensemble.truncation_variance = truncation.variances
                pre_ensemble.truncation_score_key = score_key.lower()
                pre_ensemble.pdb = truncation.models[0]

                for ensemble in self.edit_side_chains(pre_ensemble,
                                                      side_chain_treatments,
                                                      single_structure=True):
                    self.ensembles.append(ensemble)

        return self.ensembles
Beispiel #9
0
    def generate_ensembles(self,
                           models,
                           alignment_file=None,
                           ensembles_directory=None,
                           homolog_aligner=None,
                           nproc=None,
                           percent_truncation=None,
                           side_chain_treatments=SIDE_CHAIN_TREATMENTS,
                           truncation_method=None):

        if not percent_truncation:
            percent_truncation = self.percent_truncation
        if not truncation_method:
            truncation_method = self.truncation_method

        if not len(models):
            msg = "Cannot find any models for ensembling!"
            raise RuntimeError(msg)
        if not all([os.path.isfile(m) for m in models]):
            msg = "Problem reading models given to Ensembler: {0}".format(
                models)
            raise RuntimeError(msg)

        logger.info('Ensembling models in directory: %s', self.work_dir)

        # Create final ensembles directory
        if not os.path.isdir(self.ensembles_directory):
            os.mkdir(self.ensembles_directory)

        # standardise all the models
        std_models_dir = os.path.join(self.work_dir, "std_models")
        os.mkdir(std_models_dir)
        std_models = []
        for m in models:
            std_model = ample_util.filename_append(m, 'std', std_models_dir)
            pdb_edit.standardise(pdbin=m, pdbout=std_model, del_hetatm=True)
            std_models.append(std_model)

        # Get a structural alignment between the different models
        if not alignment_file:
            if homolog_aligner == 'mustang':
                logger.info("Generating alignment file with mustang_exe: %s",
                            self.mustang_exe)
                alignment_file = align_mustang(std_models,
                                               mustang_exe=self.mustang_exe,
                                               work_dir=self.work_dir)
            elif homolog_aligner == 'gesamt':
                logger.info("Generating alignment file with gesamt_exe: %s",
                            self.gesamt_exe)
                alignment_file = align_gesamt(std_models,
                                              gesamt_exe=self.gesamt_exe,
                                              work_dir=self.work_dir)
            else:
                msg = "Unknown homolog_aligner: {0}".format(homolog_aligner)
                raise RuntimeError(msg)
            logger.info("Generated alignment file: %s", alignment_file)
        else:
            logger.info("Using alignment file: %s", alignment_file)

        truncate_dir = os.path.join(self.work_dir, "homolog_truncate")
        if not os.path.isdir(truncate_dir): os.mkdir(truncate_dir)

        # Now truncate and create ensembles - as standard ample, but with no subclustering
        self.ensembles = []
        self.truncator = truncation_util.Truncator(work_dir=truncate_dir)
        self.truncator.theseus_exe = self.theseus_exe
        for truncation in self.truncator.truncate_models(
                models=std_models,
                truncation_method=truncation_method,
                percent_truncation=percent_truncation,
                truncation_pruning=None,
                homologs=True,
                alignment_file=alignment_file):
            ensemble_dir = os.path.join(
                truncation.directory, "ensemble_{0}".format(truncation.level))
            os.mkdir(ensemble_dir)
            os.chdir(ensemble_dir)

            # Need to create an alignment file for theseus
            basename = "e{0}".format(truncation.level)
            superposed_models = self.superpose_models(truncation.models,
                                                      basename=basename,
                                                      work_dir=ensemble_dir,
                                                      homologs=True)
            if not superposed_models:
                logger.critical(
                    "Skipping ensemble %s due to error with Theseus", basename)
                continue

            # Create Ensemble object
            pre_ensemble = _ensembler.Ensemble()
            pre_ensemble.num_residues = truncation.num_residues
            pre_ensemble.truncation_dir = truncation.directory
            pre_ensemble.truncation_level = truncation.level
            pre_ensemble.truncation_method = truncation.method
            pre_ensemble.truncation_percent = truncation.percent
            pre_ensemble.truncation_residues = truncation.residues
            pre_ensemble.truncation_variance = truncation.variances
            pre_ensemble.pdb = superposed_models

            for ensemble in self.edit_side_chains(pre_ensemble,
                                                  side_chain_treatments,
                                                  homologs=True):
                self.ensembles.append(ensemble)

        return self.ensembles
Beispiel #10
0
def analysePdb(amoptd):
    """Collect data on the native pdb structure"""
    
    nativePdb = fixpath(amoptd['native_pdb'])
    nativePdbInfo = pdb_edit.get_info(nativePdb)
    
    # number atoms/residues
    natoms, nresidues = pdb_edit.num_atoms_and_residues(nativePdb)

    # Get information on the origins for this spaceGroup
    try:
        originInfo = pdb_model.OriginInfo(spaceGroupLabel=nativePdbInfo.crystalInfo.spaceGroup)
    except Exception:
        originInfo = None

    # Do this here as a bug in pdbcur can knacker the CRYST1 data
    amoptd['native_pdb_code'] = nativePdbInfo.pdbCode
    amoptd['native_pdb_title'] = nativePdbInfo.title
    amoptd['native_pdb_resolution'] = nativePdbInfo.resolution
    amoptd['native_pdb_solvent_content'] = nativePdbInfo.solventContent
    amoptd['native_pdb_matthews_coefficient'] = nativePdbInfo.matthewsCoefficient
    if not originInfo:
        space_group = "P1"
    else:
        space_group = originInfo.spaceGroup()
    amoptd['native_pdb_space_group'] = space_group
    amoptd['native_pdb_num_atoms'] = natoms
    amoptd['native_pdb_num_residues'] = nresidues
    
    # First check if the native has > 1 model and extract the first if so
    if len( nativePdbInfo.models ) > 1:
        logger.info("nativePdb has > 1 model - using first")
        nativePdb1 = ample_util.filename_append( filename=nativePdb, astr="model1", directory=fixpath(amoptd['work_dir']))
        pdb_edit.extract_model( nativePdb, nativePdb1, modelID=nativePdbInfo.models[0].serial )
        nativePdb = nativePdb1
        
    # Standardise the PDB to rename any non-standard AA, remove solvent etc
    nativePdbStd = ample_util.filename_append( filename=nativePdb, astr="std", directory=fixpath(amoptd['work_dir']))
    pdb_edit.standardise(nativePdb, nativePdbStd, del_hetatm=True)
    nativePdb = nativePdbStd
    
    # Get the new Info about the native
    nativePdbInfo = pdb_edit.get_info( nativePdb )
    
    # For comparsion of shelxe model we need a single chain from the native so we get this here
    if len( nativePdbInfo.models[0].chains ) > 1:
        nativeChain1  = ample_util.filename_append( filename=nativePdbInfo.pdb,
                                                       astr="chain1", 
                                                       directory=fixpath(amoptd['work_dir']))
        pdb_edit.merge_chains(nativePdbInfo.pdb, nativeChain1)
    else:
        nativeChain1 = nativePdbInfo.pdb
    
    # Additional data
    amoptd['native_pdb_num_chains'] = len( nativePdbInfo.models[0].chains )
    amoptd['native_pdb_info'] = nativePdbInfo
    amoptd['native_pdb_std'] = nativePdbStd
    amoptd['native_pdb_1chain'] = nativeChain1
    amoptd['native_pdb_origin_info'] = originInfo
    
    return