Beispiel #1
0
    def __init__(
        self,
        structure: Structure,
        energies: Dict[Spin, np.ndarray],
        vvelocities_product: Dict[Spin, np.ndarray],
        effective_mass: Dict[Spin, np.ndarray],
        projections: Dict[Spin, Dict[str, np.ndarray]],
        kpoint_mesh: np.ndarray,
        kpoints: np.ndarray,
        ir_kpoints: np.ndarray,
        ir_kpoints_idx: np.ndarray,
        ir_to_full_kpoint_mapping: np.ndarray,
        tetrahedra: np.ndarray,
        ir_tetrahedra_info: np.ndarray,
        efermi: float,
        num_electrons: float,
        is_metal: bool,
        soc: bool,
        vb_idx: Optional[Dict[Spin, int]] = None,
    ):
        self.structure = structure
        self.energies = energies
        self.velocities_product = vvelocities_product
        self.effective_mass = effective_mass
        self.kpoint_mesh = kpoint_mesh
        self.kpoints = kpoints
        self.ir_kpoints = ir_kpoints
        self.ir_kpoints_idx = ir_kpoints_idx
        self.ir_to_full_kpoint_mapping = ir_to_full_kpoint_mapping
        self.intrinsic_fermi_level = efermi
        self._soc = soc
        self.num_electrons = num_electrons
        self.is_metal = is_metal
        self.vb_idx = vb_idx
        self.spins = self.energies.keys()
        self.a_factor, self.c_factor = _calculate_orbital_factors(projections)

        self.dos = None
        self.scattering_rates = None
        self.scattering_labels = None
        self.doping = None
        self.temperatures = None
        self.fermi_levels = None
        self.electron_conc = None
        self.hole_conc = None
        self.conductivity = None
        self.seebeck = None
        self.electronic_thermal_conductivity = None
        self.mobility = None
        self.overlap_calculator = None
        self.fd_cutoffs = None

        self.grouped_ir_to_full = groupby(np.arange(len(kpoints)),
                                          ir_to_full_kpoint_mapping)

        self.tetrahedral_band_structure = TetrahedralBandStructure(
            energies, kpoints, tetrahedra, structure, ir_kpoints_idx,
            ir_to_full_kpoint_mapping, *ir_tetrahedra_info)
Beispiel #2
0
    def __init__(
        self,
        structure: Structure,
        energies: Dict[Spin, np.ndarray],
        vvelocities_product: Dict[Spin, np.ndarray],
        velocities: Dict[Spin, np.ndarray],
        kpoint_mesh: np.ndarray,
        kpoints: np.ndarray,
        ir_kpoints_idx: np.ndarray,
        ir_to_full_kpoint_mapping: np.ndarray,
        tetrahedra: np.ndarray,
        ir_tetrahedra_info: np.ndarray,
        efermi: float,
        num_electrons: float,
        is_metal: bool,
        soc: bool,
        vb_idx: Optional[Dict[Spin, int]] = None,
    ):
        self.structure = structure
        self.velocities_product = vvelocities_product
        self.kpoint_mesh = kpoint_mesh
        self.intrinsic_fermi_level = efermi
        self.ir_to_full_kpoint_mapping = ir_to_full_kpoint_mapping
        self._soc = soc
        self.num_electrons = num_electrons
        self.is_metal = is_metal
        self.vb_idx = vb_idx
        self.spins = list(energies.keys())
        self.velocities = {
            s: v.transpose((0, 2, 1))
            for s, v in velocities.items()
        }

        self.dos = None
        self.scattering_rates = None
        self.scattering_labels = None
        self.doping = None
        self.temperatures = None
        self.fermi_levels = None
        self.electron_conc = None
        self.hole_conc = None
        self.conductivity = None
        self.seebeck = None
        self.electronic_thermal_conductivity = None
        self.mobility = None
        self.overlap_calculator = None
        self.mrta_calculator = None
        self.fd_cutoffs = None

        self.grouped_ir_to_full = groupby(np.arange(len(kpoints)),
                                          ir_to_full_kpoint_mapping)

        self.tetrahedral_band_structure = TetrahedralBandStructure.from_data(
            energies, kpoints, tetrahedra, structure, ir_kpoints_idx,
            ir_to_full_kpoint_mapping, *ir_tetrahedra_info)

        logger.info("Initializing momentum relaxation time factor calculator")
        self.mrta_calculator = MRTACalculator.from_data(
            kpoints, self.velocities)
Beispiel #3
0
    def get_dos(
        self,
        kpoint_mesh: Union[float, int, List[int]],
        energy_cutoff: Optional[float] = None,
        scissor: Optional[float] = None,
        bandgap: Optional[float] = None,
        estep: float = defaults["dos_estep"],
        symprec: float = defaults["symprec"],
        atomic_units: bool = False,
    ) -> Union[Dos, FermiDos]:
        """Calculates the density of states using the interpolated bands.

        Args:
            kpoint_mesh: The k-point mesh as a 1x3 array. E.g.,``[6, 6, 6]``.
                Alternatively, if a single value is provided this will be
                treated as a reciprocal density and the k-point mesh dimensions
                generated automatically.
            energy_cutoff: The energy cut-off to determine which bands are
                included in the interpolation. If the energy of a band falls
                within the cut-off at any k-point it will be included. For
                metals the range is defined as the Fermi level ± energy_cutoff.
                For gapped materials, the energy range is from the VBM -
                energy_cutoff to the CBM + energy_cutoff.
            scissor: The amount by which the band gap is scissored. Cannot
                be used in conjunction with the ``bandgap`` option. Has no
                effect for metallic systems.
            bandgap: Automatically adjust the band gap to this value. Cannot
                be used in conjunction with the ``scissor`` option. Has no
                effect for metallic systems.
            estep: The energy step, where smaller numbers give more
                accuracy but are more expensive.
            symprec: The symmetry tolerance used when determining the symmetry
                inequivalent k-points on which to interpolate.
            atomic_units: Whether to return the DOS in atomic units. If False, the
                unit of energy will be eV.

        Returns:
            The density of states.
        """
        if isinstance(kpoint_mesh, numeric_types):
            logger.info("DOS k-point length cutoff: {}".format(kpoint_mesh))
        else:
            str_mesh = "x".join(map(str, kpoint_mesh))
            logger.info("DOS k-point mesh: {}".format(str_mesh))

        structure = self._band_structure.structure
        tri = not self._soc
        (
            ir_kpts,
            _,
            full_kpts,
            ir_kpts_idx,
            ir_to_full_idx,
            tetrahedra,
            *ir_tetrahedra_info,
        ) = get_kpoints_tetrahedral(kpoint_mesh,
                                    structure,
                                    symprec=symprec,
                                    time_reversal_symmetry=tri)

        energies, efermi, vb_idx = self.get_energies(
            ir_kpts,
            scissor=scissor,
            bandgap=bandgap,
            energy_cutoff=energy_cutoff,
            atomic_units=atomic_units,
            return_efermi=True,
            return_vb_idx=True,
        )

        if not self._band_structure.is_metal():
            # if not a metal, set the Fermi level to the top of the valence band.
            efermi = np.max(
                [np.max(e[vb_idx[spin]]) for spin, e in energies.items()])

        full_energies = {s: e[:, ir_to_full_idx] for s, e in energies.items()}
        tetrahedral_band_structure = TetrahedralBandStructure(
            full_energies, full_kpts, tetrahedra, structure, ir_kpts_idx,
            ir_to_full_idx, *ir_tetrahedra_info)

        emin = np.min([np.min(spin_eners) for spin_eners in energies.values()])
        emax = np.max([np.max(spin_eners) for spin_eners in energies.values()])
        epoints = int(round((emax - emin) / estep))
        energies = np.linspace(emin, emax, epoints)

        _, dos = tetrahedral_band_structure.get_density_of_states(energies)

        return FermiDos(efermi,
                        energies,
                        dos,
                        structure,
                        atomic_units=atomic_units)
Beispiel #4
0
class AmsetData(MSONable):
    def __init__(
        self,
        structure: Structure,
        energies: Dict[Spin, np.ndarray],
        vvelocities_product: Dict[Spin, np.ndarray],
        velocities: Dict[Spin, np.ndarray],
        kpoint_mesh: np.ndarray,
        kpoints: np.ndarray,
        ir_kpoints: np.ndarray,
        ir_kpoints_idx: np.ndarray,
        ir_to_full_kpoint_mapping: np.ndarray,
        tetrahedra: np.ndarray,
        ir_tetrahedra_info: np.ndarray,
        efermi: float,
        num_electrons: float,
        is_metal: bool,
        soc: bool,
        vb_idx: Optional[Dict[Spin, int]] = None,
    ):
        self.structure = structure
        self.energies = energies
        self.velocities_product = vvelocities_product
        self.kpoint_mesh = kpoint_mesh
        self.kpoints = kpoints
        self.ir_kpoints = ir_kpoints
        self.ir_kpoints_idx = ir_kpoints_idx
        self.ir_to_full_kpoint_mapping = ir_to_full_kpoint_mapping
        self.intrinsic_fermi_level = efermi
        self._soc = soc
        self.num_electrons = num_electrons
        self.is_metal = is_metal
        self.vb_idx = vb_idx
        self.spins = self.energies.keys()

        self.dos = None
        self.scattering_rates = None
        self.scattering_labels = None
        self.doping = None
        self.temperatures = None
        self.fermi_levels = None
        self.electron_conc = None
        self.hole_conc = None
        self.conductivity = None
        self.seebeck = None
        self.electronic_thermal_conductivity = None
        self.mobility = None
        self.overlap_calculator = None
        self.mrta_calculator = None
        self.fd_cutoffs = None

        self.velocities = {s: v.transpose((0, 2, 1)) for s, v in velocities.items()}

        self.grouped_ir_to_full = groupby(
            np.arange(len(kpoints)), ir_to_full_kpoint_mapping
        )

        self.tetrahedral_band_structure = TetrahedralBandStructure(
            energies,
            kpoints,
            tetrahedra,
            structure,
            ir_kpoints_idx,
            ir_to_full_kpoint_mapping,
            *ir_tetrahedra_info
        )

        self.mrta_calculator = MRTACalculator(
            self.kpoints, self.kpoint_mesh, self.velocities
        )

    def set_overlap_calculator(self, overlap_calculator):
        nbands_equal = [
            self.energies[s].shape[0] == overlap_calculator.nbands[s]
            for s in self.spins
        ]

        if not all(nbands_equal):
            raise RuntimeError(
                "Overlap calculator does not have the correct number of bands\n"
                "If using wavefunction coefficients, ensure they were generated using"
                "the same energy_cutoff (not encut)"
            )

        self.overlap_calculator = overlap_calculator

    def calculate_dos(self, estep: float = defaults["dos_estep"]):
        """
        Args:
            estep: The DOS energy step in eV, where smaller numbers give more
                accuracy but are more expensive.
        """
        emin = np.min([np.min(spin_eners) for spin_eners in self.energies.values()])
        emax = np.max([np.max(spin_eners) for spin_eners in self.energies.values()])
        epoints = int(round((emax - emin) / (estep * units.eV)))
        energies = np.linspace(emin, emax, epoints)
        dos_weight = 1 if self._soc or len(self.spins) == 2 else 2

        logger.debug("DOS parameters:")
        log_list(
            [
                "emin: {:.2f} eV".format(emin / units.eV),
                "emax: {:.2f} eV".format(emax / units.eV),
                "dos weight: {}".format(dos_weight),
                "n points: {}".format(epoints),
            ]
        )

        logger.debug("Generating tetrahedral DOS:")
        t0 = time.perf_counter()
        emesh, dos = self.tetrahedral_band_structure.get_density_of_states(
            energies=energies, progress_bar=True
        )
        log_time_taken(t0)

        num_electrons = self.num_electrons if self.is_metal else None

        self.dos = FermiDos(
            self.intrinsic_fermi_level,
            emesh,
            dos,
            self.structure,
            atomic_units=True,
            dos_weight=dos_weight,
            num_electrons=num_electrons,
        )

    def set_doping_and_temperatures(self, doping: np.ndarray, temperatures: np.ndarray):
        if not self.dos:
            raise RuntimeError(
                "The DOS should be calculated (AmsetData.calculate_dos) before "
                "setting doping levels."
            )

        if doping is None:
            # Generally this is for metallic systems; here we use the intrinsic Fermi
            # level
            self.doping = [0]
            print("doping is none")
        else:
            self.doping = doping * (1 / cm_to_bohr) ** 3

        self.temperatures = temperatures

        self.fermi_levels = np.zeros((len(doping), len(temperatures)))
        self.electron_conc = np.zeros((len(doping), len(temperatures)))
        self.hole_conc = np.zeros((len(doping), len(temperatures)))

        fermi_level_info = []
        tols = np.logspace(-5, 0, 6)
        for n, t in np.ndindex(self.fermi_levels.shape):
            for i, tol in enumerate(tols):
                # Finding the Fermi level is quite fickle. Enumerate multiple
                # tolerances and use the first one that works!
                try:
                    if self.doping[n] == 0:
                        self.fermi_levels[n, t] = self.dos.get_fermi_from_num_electrons(
                            self.num_electrons,
                            temperatures[t],
                            tol=tol / 1000,
                            precision=10,
                        )
                    else:
                        (
                            self.fermi_levels[n, t],
                            self.electron_conc[n, t],
                            self.hole_conc[n, t],
                        ) = self.dos.get_fermi(
                            self.doping[n],
                            temperatures[t],
                            tol=tol,
                            precision=10,
                            return_electron_hole_conc=True,
                        )
                    break
                except ValueError:
                    if i == len(tols) - 1:
                        raise ValueError(
                            "Could not calculate Fermi level position."
                            "Try a denser k-point mesh."
                        )
                    else:
                        pass

            fermi_level_info.append(
                "{:.2g} cm⁻³ & {} K: {:.4f} eV".format(
                    doping[n], temperatures[t], self.fermi_levels[n, t] / units.eV
                )
            )

        logger.info("Calculated Fermi levels:")
        log_list(fermi_level_info)

    def calculate_fd_cutoffs(
        self, fd_tolerance: Optional[float] = 0.01, cutoff_pad: float = 0.0
    ):
        energies = self.dos.energies

        # three fermi integrals govern transport properties:
        #   1. df/de controls conductivity and mobility
        #   2. (e-u) * df/de controls Seebeck
        #   3. (e-u)^2 df/de controls electronic thermal conductivity
        # take the absolute sum of the integrals across all doping and
        # temperatures. this gives us the energies that are important for
        # transport

        weights = np.zeros(energies.shape)
        for n, t in np.ndindex(self.fermi_levels.shape):
            ef = self.fermi_levels[n, t]
            temp = self.temperatures[t]

            dfde = -dFDde(energies, ef, temp * units.BOLTZMANN)
            sigma_int = np.abs(dfde)
            seeb_int = np.abs((energies - ef) * dfde)
            ke_int = np.abs((energies - ef) ** 2 * dfde)

            # normalize the transport integrals and sum
            nt_weights = sigma_int / sigma_int.max()
            nt_weights += seeb_int / seeb_int.max()
            nt_weights += ke_int / ke_int.max()
            weights = np.maximum(weights, nt_weights)

        if not self.is_metal:
            # weights should be zero in the band gap as there will be no density
            vb_bands = [
                np.max(self.energies[s][: self.vb_idx[s] + 1]) for s in self.spins
            ]
            cb_bands = [
                np.min(self.energies[s][self.vb_idx[s] + 1 :]) for s in self.spins
            ]
            vbm_e = np.max(vb_bands)
            cbm_e = np.min(cb_bands)
            weights[(energies > vbm_e) & (energies < cbm_e)] = 0

        weights /= np.max(weights)
        cumsum = np.cumsum(weights)
        cumsum /= np.max(cumsum)

        if fd_tolerance:
            min_cutoff = energies[cumsum < fd_tolerance / 2].max()
            max_cutoff = energies[cumsum > 1 - fd_tolerance / 2].min()
        else:
            min_cutoff = energies.min()
            max_cutoff = energies.max()

        min_cutoff -= cutoff_pad
        max_cutoff += cutoff_pad

        logger.info("Calculated Fermi–Dirac cut-offs:")
        log_list(
            [
                "min: {:.3f} eV".format(min_cutoff / units.eV),
                "max: {:.3f} eV".format(max_cutoff / units.eV),
            ]
        )
        self.fd_cutoffs = (min_cutoff, max_cutoff)

    def set_scattering_rates(
        self, scattering_rates: Dict[Spin, np.ndarray], scattering_labels: List[str]
    ):
        for spin in self.spins:
            s = (len(self.doping), len(self.temperatures)) + self.energies[spin].shape
            if scattering_rates[spin].shape[1:] != s:
                raise ValueError(
                    "Shape of scattering_type rates array does not match the "
                    "number of dopings, temperatures, bands, or kpoints"
                )

            if scattering_rates[spin].shape[0] != len(scattering_labels):
                raise ValueError(
                    "Number of scattering_type rates does not match number of "
                    "scattering_type labels"
                )

        self.scattering_rates = scattering_rates
        self.scattering_labels = scattering_labels

    def set_transport_properties(
        self,
        conductivity: np.ndarray,
        seebeck: np.ndarray,
        electronic_thermal_conductivity: np.ndarray,
        mobility: Optional[np.ndarray] = None,
    ):
        self.conductivity = conductivity
        self.seebeck = seebeck
        self.electronic_thermal_conductivity = electronic_thermal_conductivity
        self.mobility = mobility

    def to_dict(self, include_mesh=defaults["write_mesh"]):
        data = {
            "doping": self.doping,
            "temperatures": self.temperatures,
            "fermi_levels": self.fermi_levels,
            "conductivity": self.conductivity,
            "seebeck": self.seebeck,
            "electronic_thermal_conductivity": self.electronic_thermal_conductivity,
            "mobility": self.mobility,
        }

        if include_mesh:
            rates = self.scattering_rates
            energies = self.energies
            vv = self.velocities_product

            ir_rates = {s: r[..., self.ir_kpoints_idx] for s, r in rates.items()}
            ir_energies = {s: e[:, self.ir_kpoints_idx] for s, e in energies.items()}
            ir_vv = {s: v[..., self.ir_kpoints_idx] for s, v in vv.items()}

            mesh_data = {
                "energies": cast_dict_list(ir_energies),
                "kpoints": self.kpoints,
                "ir_kpoints": self.ir_kpoints,
                "ir_to_full_kpoint_mapping": self.ir_to_full_kpoint_mapping,
                "efermi": self.intrinsic_fermi_level,
                "vb_idx": cast_dict_list(self.vb_idx),
                "dos": self.dos,
                "velocities_product": cast_dict_list(ir_vv),
                "scattering_rates": cast_dict_list(ir_rates),
                "scattering_labels": self.scattering_labels,
                "is_metal": self.is_metal,
                "fd_cutoffs": self.fd_cutoffs,
                "structure": self.structure,
                "soc": self._soc,
            }
            data.update(mesh_data)
        return data

    def to_data(self):
        data = []

        triu = np.triu_indices(3)
        for n, t in np.ndindex(len(self.doping), len(self.temperatures)):
            row = [self.doping[n], self.temperatures[t], self.fermi_levels[n, t]]
            row.extend(self.conductivity[n, t][triu])
            row.extend(self.seebeck[n, t][triu])
            row.extend(self.electronic_thermal_conductivity[n, t][triu])

            if self.mobility is not None:
                for mob in self.mobility.values():
                    row.extend(mob[n, t][triu])
            data.append(row)

        headers = ["doping[cm^-3]", "temperature[K]", "Fermi_level[eV]"]
        ds = ("xx", "xy", "xz", "yy", "yz", "zz")

        # TODO: confirm unit of kappa
        for prop, unit in [("cond", "S/m"), ("seebeck", "µV/K"), ("kappa", "?")]:
            headers.extend(["{}_{}[{}]".format(prop, d, unit) for d in ds])

        if self.mobility is not None:
            for name in self.mobility.keys():
                headers.extend(["{}_mobility_{}[cm^2/V.s]".format(name, d) for d in ds])

        return data, headers

    def to_file(
        self,
        directory: str = ".",
        prefix: Optional[str] = None,
        write_mesh: bool = defaults["write_mesh"],
        file_format: str = defaults["file_format"],
        suffix_mesh: bool = True,
    ):
        if self.conductivity is None:
            raise ValueError("Can't write AmsetData, transport properties not set")

        if not prefix:
            prefix = ""
        else:
            prefix += "_"

        if suffix_mesh:
            suffix = "_{}".format("x".join(map(str, self.kpoint_mesh)))
        else:
            suffix = ""

        if file_format in ["json", "yaml"]:
            data = self.to_dict(include_mesh=write_mesh)

            filename = joinpath(
                directory, "{}amset_data{}.{}".format(prefix, suffix, file_format)
            )
            dumpfn(data, filename)

        elif file_format in ["csv", "txt"]:
            # don't write the data as JSON, instead write raw text files
            data, headers = self.to_data()
            filename = joinpath(
                directory, "{}amset_transport{}.{}".format(prefix, suffix, file_format)
            )
            np.savetxt(filename, data, header=" ".join(headers))

            if write_mesh:
                logger.warning("Writing mesh data as txt or csv not supported")

        else:
            raise ValueError("Unrecognised output format: {}".format(file_format))

        return filename
Beispiel #5
0
def calculate_rate(
    tbs: TetrahedralBandStructure,
    overlap_calculator,
    mrta_calculator,
    elastic_scatterers,
    inelastic_scatterers,
    amset_data_min: _AmsetDataMin,
    coeffs,
    coeffs_mapping,
    spin,
    b_idx,
    k_idx,
    energy_diff=None,
):
    rlat = amset_data_min.structure.lattice.reciprocal_lattice.matrix
    velocity = amset_data_min.velocities[spin][b_idx, k_idx]
    energy = tbs.energies[spin][b_idx, k_idx]

    if energy_diff:
        energy += energy_diff

    (
        tet_dos,
        tet_mask,
        cs_weights,
        tet_contributions,
    ) = tbs.get_tetrahedra_density_of_states(
        spin,
        energy,
        return_contributions=True,
        symmetry_reduce=False,
        # band_idx=b_idx,  # turn this on to disable interband scattering
    )

    if len(tet_dos) == 0:
        return 0

    # next, get k-point indices and band_indices
    property_mask, band_kpoint_mask, band_mask, kpoint_mask = tbs.get_masks(
        spin, tet_mask)
    k = tbs.kpoints[k_idx]
    k_primes = tbs.kpoints[kpoint_mask]

    if coeffs is not None:
        # use cached coefficients to calculate the overlap on the fine mesh
        # tetrahedron vertices
        spin_coeffs = coeffs[spin]
        spin_coeffs_mapping = coeffs_mapping[spin]
        if len(spin_coeffs.shape) == 3:
            # ncl
            overlap = _get_overlap_ncl(spin_coeffs, spin_coeffs_mapping, b_idx,
                                       k_idx, band_mask, kpoint_mask)
        else:
            overlap = _get_overlap(spin_coeffs, spin_coeffs_mapping, b_idx,
                                   k_idx, band_mask, kpoint_mask)
    else:
        overlap = overlap_calculator.get_overlap(spin, b_idx, k, band_mask,
                                                 k_primes)

    # put overlap back in array with shape (nbands, nkpoints)
    all_overlap = np.zeros(tbs.energies[spin].shape)
    all_overlap[band_kpoint_mask] = overlap

    # now select the properties at the tetrahedron vertices
    vert_overlap = all_overlap[property_mask]

    # get interpolated overlap at centre of tetrahedra cross sections
    tet_overlap = get_cross_section_values(vert_overlap, *tet_contributions)
    tetrahedra = tbs.tetrahedra[spin][tet_mask]

    # have to deal with the case where the tetrahedron cross section crosses the
    # zone boundary. This is a slight inaccuracy but we just treat the
    # cross section as if it is on one side of the boundary
    tet_kpoints = tbs.kpoints[tetrahedra]
    base_kpoints = tet_kpoints[:, 0][:, None, :]
    k_diff = pbc_diff(tet_kpoints, base_kpoints) + pbc_diff(base_kpoints, k)

    # project the tetrahedron cross sections onto 2D surfaces in either a triangle
    # or quadrilateral
    k_diff = np.dot(k_diff, rlat)
    intersections = get_cross_section_values(k_diff,
                                             *tet_contributions,
                                             average=False)
    projected_intersections, basis = get_projected_intersections(intersections)

    k_spacing = np.linalg.norm(np.dot(rlat, 1 / amset_data_min.kpoint_mesh))
    qpoints, weights, mapping = get_fine_mesh_qpoints(
        projected_intersections,
        basis,
        *tet_contributions[0:3],
        high_tol=k_spacing * 0.5,
        med_tol=k_spacing * 2,
        cross_section_weights=cs_weights,
    )
    qpoint_norm_sq = np.sum(qpoints**2, axis=-1)

    k_primes = np.dot(qpoints, np.linalg.inv(rlat)) + k
    k_primes = kpoints_to_first_bz(k_primes)

    # unit q in reciprocal cartesian coordinates
    unit_q = qpoints / np.sqrt(qpoint_norm_sq)[:, None]
    if energy_diff:
        e_fd = _get_fd(energy, amset_data_min.fermi_levels,
                       amset_data_min.temperatures)
        emission = energy_diff <= 0
        rates = [
            s.factor(unit_q, qpoint_norm_sq, emission, e_fd)
            for s in inelastic_scatterers
        ]
        mrta_factor = 1
    else:
        mrta_factor = mrta_calculator.get_mrta_factor(spin, b_idx, k,
                                                      tet_mask[0][mapping],
                                                      k_primes)
        rates = [
            s.factor(unit_q, qpoint_norm_sq, spin, b_idx, k, velocity)
            for s in elastic_scatterers
        ]

    rates = np.array(rates)
    rates /= amset_data_min.structure.lattice.reciprocal_lattice.volume
    rates *= tet_overlap[mapping] * weights * mrta_factor

    # this is too expensive vs tetrahedron integration and doesn't add much more
    # accuracy; could offer this as an option
    # overlap = self.amset_data.overlap_calculator.get_overlap(
    #     spin, b_idx, k, tet_mask[0][mapping], k_primes
    # )
    # rates *= overlap * weights * mrta_factor

    # sometimes the projected intersections can be nan when the density of states
    # contribution is infinitesimally small; this catches those errors
    rates[np.isnan(rates)] = 0

    return np.sum(rates, axis=-1)
Beispiel #6
0
def scattering_worker(
    tbs_reference,
    overlap_type,
    overlap_calculator_reference,
    mrta_calculator_reference,
    elastic_scatterers,
    inelastic_scatterers,
    amset_data_min_reference,
    coeffs_buffer,
    coeffs_mapping_buffer,
    in_queue,
    out_queue,
):
    try:
        tbs = TetrahedralBandStructure.from_reference(*tbs_reference)
        mrta_calculator = MRTACalculator.from_reference(
            *mrta_calculator_reference)
        amset_data_min = _AmsetDataMin.from_reference(
            *amset_data_min_reference)

        if coeffs_buffer is None:
            coeffs = None
            coeffs_mapping = None
        else:
            coeffs = dict_array_from_buffer(coeffs_buffer)
            coeffs_mapping = dict_array_from_buffer(coeffs_mapping_buffer)

        if overlap_type == "wavefunction":
            overlap_calculator = WavefunctionOverlapCalculator.from_reference(
                *overlap_calculator_reference)
        elif overlap_type == "projection":
            overlap_calculator = ProjectionOverlapCalculator.from_reference(
                *overlap_calculator_reference)
        else:
            raise ValueError(
                "Unrecognised overlap type: {}".format(overlap_type))

        elastic_scatterers = [
            AcousticDeformationPotentialScattering.from_reference(
                *s) if isinstance(s, tuple) else s for s in elastic_scatterers
        ]

        with np.errstate(all="ignore"):
            while True:
                job = in_queue.get()

                if job is None:
                    break

                spin, b_idx, k_idx, energy_diff, ir_k_idx = job
                rate = calculate_rate(
                    tbs,
                    overlap_calculator,
                    mrta_calculator,
                    elastic_scatterers,
                    inelastic_scatterers,
                    amset_data_min,
                    coeffs,
                    coeffs_mapping,
                    spin,
                    b_idx,
                    k_idx,
                    energy_diff=energy_diff,
                )
                out_queue.put((ir_k_idx, rate))

    except BaseException as e:
        error_msg = traceback.format_exc()
        out_queue.put((e, error_msg))
Beispiel #7
0
class AmsetData(MSONable):
    def __init__(
        self,
        structure: Structure,
        energies: Dict[Spin, np.ndarray],
        vvelocities_product: Dict[Spin, np.ndarray],
        velocities: Dict[Spin, np.ndarray],
        kpoint_mesh: np.ndarray,
        kpoints: np.ndarray,
        ir_kpoints: np.ndarray,
        ir_kpoints_idx: np.ndarray,
        ir_to_full_kpoint_mapping: np.ndarray,
        tetrahedra: np.ndarray,
        ir_tetrahedra_info: np.ndarray,
        efermi: float,
        num_electrons: float,
        is_metal: bool,
        soc: bool,
        vb_idx: Optional[Dict[Spin, int]] = None,
    ):
        self.structure = structure
        self.energies = energies
        self.velocities_product = vvelocities_product
        self.kpoint_mesh = kpoint_mesh
        self.kpoints = kpoints
        self.ir_kpoints = ir_kpoints
        self.ir_kpoints_idx = ir_kpoints_idx
        self.ir_to_full_kpoint_mapping = ir_to_full_kpoint_mapping
        self.intrinsic_fermi_level = efermi
        self._soc = soc
        self.num_electrons = num_electrons
        self.is_metal = is_metal
        self.vb_idx = vb_idx
        self.spins = list(self.energies.keys())
        self.velocities = {
            s: v.transpose((0, 2, 1))
            for s, v in velocities.items()
        }

        self.dos = None
        self.scattering_rates = None
        self.scattering_labels = None
        self.doping = None
        self.temperatures = None
        self.fermi_levels = None
        self.electron_conc = None
        self.hole_conc = None
        self.conductivity = None
        self.seebeck = None
        self.electronic_thermal_conductivity = None
        self.mobility = None
        self.overlap_calculator = None
        self.mrta_calculator = None
        self.fd_cutoffs = None

        self.grouped_ir_to_full = groupby(np.arange(len(kpoints)),
                                          ir_to_full_kpoint_mapping)

        self.tetrahedral_band_structure = TetrahedralBandStructure(
            energies, kpoints, tetrahedra, structure, ir_kpoints_idx,
            ir_to_full_kpoint_mapping, *ir_tetrahedra_info)

        logger.info("Initializing momentum relaxation time factor calculator")
        self.mrta_calculator = MRTACalculator(self.kpoints, self.velocities)

    def set_overlap_calculator(self, overlap_calculator):
        equal = check_nbands_equal(overlap_calculator, self)
        if not equal:
            raise RuntimeError(
                "Overlap calculator does not have the correct number of bands\n"
                "If using wavefunction coefficients, ensure they were generated using"
                "the same energy_cutoff (not encut)")

        self.overlap_calculator = overlap_calculator

    def calculate_dos(
        self,
        estep: float = defaults["dos_estep"],
        progress_bar: bool = defaults["print_log"],
    ):
        """
        Args:
            estep: The DOS energy step in eV, where smaller numbers give more
                accuracy but are more expensive.
            progress_bar: Show a progress bar for DOS calculation.
        """
        emin = np.min(
            [np.min(spin_eners) for spin_eners in self.energies.values()])
        emax = np.max(
            [np.max(spin_eners) for spin_eners in self.energies.values()])
        epoints = int(round((emax - emin) / (estep * ev_to_hartree)))
        energies = np.linspace(emin, emax, epoints)
        dos_weight = 1 if self._soc or len(self.spins) == 2 else 2

        logger.info("DOS parameters:")
        log_list([
            "emin: {:.2f} eV".format(emin * hartree_to_ev),
            "emax: {:.2f} eV".format(emax * hartree_to_ev),
            "dos weight: {}".format(dos_weight),
            "n points: {}".format(epoints),
        ])

        logger.info("Generating tetrahedral DOS:")
        t0 = time.perf_counter()
        emesh, dos = self.tetrahedral_band_structure.get_density_of_states(
            energies=energies, progress_bar=progress_bar)
        log_time_taken(t0)

        num_electrons = self.num_electrons if self.is_metal else None

        self.dos = FermiDos(
            self.intrinsic_fermi_level,
            emesh,
            dos,
            self.structure,
            atomic_units=True,
            dos_weight=dos_weight,
            num_electrons=num_electrons,
        )

    def set_doping_and_temperatures(self, doping: np.ndarray,
                                    temperatures: np.ndarray):
        if not self.dos:
            raise RuntimeError(
                "The DOS should be calculated (AmsetData.calculate_dos) before "
                "setting doping levels.")

        if doping is None:
            # Generally this is for metallic systems; here we use the intrinsic Fermi
            # level
            self.doping = [0]
            print("doping is none")
        else:
            self.doping = doping * (1 / cm_to_bohr)**3

        self.temperatures = temperatures

        self.fermi_levels = np.zeros((len(doping), len(temperatures)))
        self.electron_conc = np.zeros((len(doping), len(temperatures)))
        self.hole_conc = np.zeros((len(doping), len(temperatures)))

        fermi_level_info = []
        tols = np.logspace(-5, 0, 6)
        for n, t in np.ndindex(self.fermi_levels.shape):
            for i, tol in enumerate(tols):
                # Finding the Fermi level is quite fickle. Enumerate multiple
                # tolerances and use the first one that works!
                try:
                    if self.doping[n] == 0:
                        self.fermi_levels[
                            n, t] = self.dos.get_fermi_from_num_electrons(
                                self.num_electrons,
                                temperatures[t],
                                tol=tol / 1000,
                                precision=10,
                            )
                    else:
                        (
                            self.fermi_levels[n, t],
                            self.electron_conc[n, t],
                            self.hole_conc[n, t],
                        ) = self.dos.get_fermi(
                            self.doping[n],
                            temperatures[t],
                            tol=tol,
                            precision=10,
                            return_electron_hole_conc=True,
                        )
                    break
                except ValueError:
                    if i == len(tols) - 1:
                        raise ValueError(
                            "Could not calculate Fermi level position."
                            "Try a denser k-point mesh.")
                    else:
                        pass

            fermi_level_info.append((doping[n], temperatures[t],
                                     self.fermi_levels[n, t] * hartree_to_ev))

        table = tabulate(
            fermi_level_info,
            headers=("conc [cm⁻³]", "temp [K]", "E_fermi [eV]"),
            numalign="right",
            stralign="center",
            floatfmt=(".2e", ".1f", ".4f"),
        )
        logger.info("Calculated Fermi levels:")
        logger.info(table)

    def calculate_fd_cutoffs(
        self,
        fd_tolerance: Optional[float] = 0.01,
        cutoff_pad: float = 0.0,
        max_moment: int = 2,
        mobility_rates_only: bool = False,
    ):
        energies = self.dos.energies
        vv = {
            s: v.transpose((0, 3, 1, 2))
            for s, v in self.velocities_product.items()
        }
        _, vvdos = self.tetrahedral_band_structure.get_density_of_states(
            energies, integrand=vv, sum_spins=True, use_cached_weights=True)
        vvdos = tensor_average(vvdos)
        # vvdos = np.array(self.dos.get_densities())

        # three fermi integrals govern transport properties:
        #   1. df/de controls conductivity and mobility
        #   2. (e-u) * df/de controls Seebeck
        #   3. (e-u)^2 df/de controls electronic thermal conductivity
        # take the absolute sum of the integrals across all doping and
        # temperatures. this gives us the energies that are important for
        # transport
        if fd_tolerance:

            def get_min_max_cutoff(cumsum):
                min_idx = np.where(cumsum < fd_tolerance / 2)[0].max()
                max_idx = np.where(cumsum > (1 - fd_tolerance / 2))[0].min()
                return energies[min_idx], energies[max_idx]

            min_cutoff = np.inf
            max_cutoff = -np.inf
            for n, t in np.ndindex(self.fermi_levels.shape):
                ef = self.fermi_levels[n, t]
                temp = self.temperatures[t]
                dfde = -dfdde(energies, ef, temp * boltzmann_au)

                for moment in range(max_moment + 1):
                    weight = np.abs((energies - ef)**moment * dfde)
                    weight_dos = weight * vvdos
                    weight_cumsum = np.cumsum(weight_dos)
                    weight_cumsum /= np.max(weight_cumsum)

                    cmin, cmax = get_min_max_cutoff(weight_cumsum)
                    min_cutoff = min(cmin, min_cutoff)
                    max_cutoff = max(cmax, max_cutoff)

                    # import matplotlib.pyplot as plt
                    # ax = plt.gca()
                    # plt.plot(energies / units.eV, weight / weight.max())
                    # plt.plot(energies / units.eV, vvdos / vvdos.max())
                    # plt.plot(energies / units.eV, weight_dos / weight_dos.max())
                    # plt.plot(energies / units.eV, weight_cumsum / weight_cumsum.max())
                    # ax.set(xlim=(4, 7.5))
                    # plt.show()

        else:
            min_cutoff = energies.min()
            max_cutoff = energies.max()

        if mobility_rates_only:
            vbm = max(
                [self.energies[s][self.vb_idx[s]].max() for s in self.spins])
            cbm = min([
                self.energies[s][self.vb_idx[s] + 1].min() for s in self.spins
            ])
            mid_gap = (cbm + vbm) / 2
            if np.all(self.doping < 0):
                # only electron mobility so don't calculate valence band rates
                min_cutoff = max(min_cutoff, mid_gap)
            elif np.all(self.doping < 0):
                # only hole mobility so don't calculate conudction band rates
                max_cutoff = min(max_cutoff, mid_gap)

        min_cutoff -= cutoff_pad
        max_cutoff += cutoff_pad

        logger.info("Calculated Fermi–Dirac cut-offs:")
        log_list([
            "min: {:.3f} eV".format(min_cutoff * hartree_to_ev),
            "max: {:.3f} eV".format(max_cutoff * hartree_to_ev),
        ])
        self.fd_cutoffs = (min_cutoff, max_cutoff)

    def set_scattering_rates(self, scattering_rates: Dict[Spin, np.ndarray],
                             scattering_labels: List[str]):
        for spin in self.spins:
            s = (len(self.doping), len(
                self.temperatures)) + self.energies[spin].shape
            if scattering_rates[spin].shape[1:] != s:
                raise ValueError(
                    "Shape of scattering_type rates array does not match the "
                    "number of dopings, temperatures, bands, or kpoints")

            if scattering_rates[spin].shape[0] != len(scattering_labels):
                raise ValueError(
                    "Number of scattering_type rates does not match number of "
                    "scattering_type labels")

        self.scattering_rates = scattering_rates
        self.scattering_labels = scattering_labels

    def fill_rates_outside_cutoffs(self, fill_value=None):
        if self.scattering_rates is None:
            raise ValueError(
                "Scattering rates must be set before being filled")

        min_fd, max_fd = self.fd_cutoffs
        snt_fill = fill_value
        for spin, spin_energies in self.energies.items():
            mask = (spin_energies < min_fd) | (spin_energies > max_fd)
            rate_info = defaultdict(list)
            for s, n, t in np.ndindex(self.scattering_rates[spin].shape[:3]):
                if fill_value is None:
                    # get average log rate inside cutoffs
                    snt_fill = np.log(self.scattering_rates[spin][s, n, t,
                                                                  ~mask])
                    snt_fill = np.exp(snt_fill.mean())

                rate_info[self.scattering_labels[s]].append(snt_fill)
                self.scattering_rates[spin][s, n, t, mask] = snt_fill

            if len(self.spins) == 1:
                logger.info(
                    "Filling scattering rates [s⁻¹] outside FD cutoffs with:")
            else:
                logger.info(
                    "Filling {} scattering rates [s⁻¹] outside FD cutoffs "
                    "with:".format(spin_name[spin]))

            headers = ["conc [cm⁻³]", "temp [K]"]
            headers += ["{}".format(s) for s in self.scattering_labels]
            rate_table = []
            for i, (n, t) in enumerate(np.ndindex(self.fermi_levels.shape)):
                col = [
                    self.doping[n] * (1 / bohr_to_cm)**3, self.temperatures[t]
                ]
                col += [rate_info[s][i] for s in self.scattering_labels]
                rate_table.append(col)

            table = tabulate(
                rate_table,
                headers=headers,
                numalign="right",
                stralign="center",
                floatfmt=[".2e", ".1f"] +
                [".2e"] * len(self.scattering_labels),
            )
            logger.info(table)

    def set_transport_properties(
        self,
        conductivity: np.ndarray,
        seebeck: np.ndarray,
        electronic_thermal_conductivity: np.ndarray,
        mobility: Optional[np.ndarray] = None,
    ):
        self.conductivity = conductivity
        self.seebeck = seebeck
        self.electronic_thermal_conductivity = electronic_thermal_conductivity
        self.mobility = mobility

    def to_dict(self, include_mesh=defaults["write_mesh"]):
        data = {
            "doping": (self.doping * cm_to_bohr**3).round(),
            "temperatures": self.temperatures,
            "fermi_levels": self.fermi_levels * hartree_to_ev,
            "conductivity": self.conductivity,
            "seebeck": self.seebeck,
            "electronic_thermal_conductivity":
            self.electronic_thermal_conductivity,
            "mobility": self.mobility,
        }

        if include_mesh:
            rates = self.scattering_rates
            energies = self.energies
            vel = self.velocities

            ir_rates = {
                s: r[..., self.ir_kpoints_idx]
                for s, r in rates.items()
            }
            ir_energies = {
                s: e[:, self.ir_kpoints_idx] * hartree_to_ev
                for s, e in energies.items()
            }
            ir_vel = {s: v[:, self.ir_kpoints_idx] for s, v in vel.items()}

            mesh_data = {
                "energies":
                ir_energies,
                "kpoints":
                self.kpoints,
                "ir_kpoints":
                self.ir_kpoints,
                "ir_to_full_kpoint_mapping":
                self.ir_to_full_kpoint_mapping,
                "efermi":
                self.intrinsic_fermi_level * hartree_to_ev,
                "vb_idx":
                self.vb_idx,
                "num_electrons":
                self.num_electrons,
                # "dos": self.dos,  # TODO: Convert dos to eV
                "velocities":
                ir_vel,  # TODO: convert units
                "scattering_rates":
                ir_rates,
                "scattering_labels":
                self.scattering_labels,
                "is_metal":
                self.is_metal,
                "fd_cutoffs": (
                    self.fd_cutoffs[0] * hartree_to_ev,
                    self.fd_cutoffs[1] * hartree_to_ev,
                ),
                "structure":
                get_angstrom_structure(self.structure),
                "soc":
                self._soc,
                "doping":
                data["doping"],
                "temperatures":
                data["temperatures"],
                "fermi_levels":
                data["fermi_levels"],
            }
            data["mesh"] = mesh_data
        return data

    def to_data(self):
        data = []

        triu = np.triu_indices(3)
        for n, t in np.ndindex(len(self.doping), len(self.temperatures)):
            row = [
                self.doping[n] * cm_to_bohr**3,
                self.temperatures[t],
                self.fermi_levels[n, t] * hartree_to_ev,
            ]
            row.extend(self.conductivity[n, t][triu])
            row.extend(self.seebeck[n, t][triu])
            row.extend(self.electronic_thermal_conductivity[n, t][triu])

            if self.mobility is not None:
                for mob in self.mobility.values():
                    row.extend(mob[n, t][triu])
            data.append(row)

        headers = ["doping[cm^-3]", "temperature[K]", "Fermi_level[eV]"]
        ds = ("xx", "xy", "xz", "yy", "yz", "zz")

        # TODO: confirm unit of kappa
        for prop, unit in [("cond", "S/m"), ("seebeck", "µV/K"),
                           ("kappa", "?")]:
            headers.extend(["{}_{}[{}]".format(prop, d, unit) for d in ds])

        if self.mobility is not None:
            for name in self.mobility.keys():
                headers.extend(
                    ["{}_mobility_{}[cm^2/V.s]".format(name, d) for d in ds])

        return data, headers

    def to_file(
        self,
        directory: str = ".",
        prefix: Optional[str] = None,
        write_mesh_file: bool = defaults["write_mesh"],
        file_format: str = defaults["file_format"],
        suffix_mesh: bool = True,
    ):
        if self.conductivity is None:
            raise ValueError(
                "Can't write AmsetData, transport properties not set")

        if not prefix:
            prefix = ""
        else:
            prefix += "_"

        if suffix_mesh:
            suffix = "_{}".format("x".join(map(str, self.kpoint_mesh)))
        else:
            suffix = ""

        if file_format in ["json", "yaml"]:
            data = self.to_dict()
            data = cast_dict_list(data)

            filename = joinpath(
                directory, "{}transport{}.{}".format(prefix, suffix,
                                                     file_format))
            dumpfn(data, filename, indent=4)

        elif file_format in ["csv", "txt"]:
            # don't write the data as JSON, instead write raw text files
            data, headers = self.to_data()
            filename = joinpath(
                directory, "{}transport{}.{}".format(prefix, suffix,
                                                     file_format))
            np.savetxt(filename, data, header=" ".join(headers))

        else:
            raise ValueError(
                "Unrecognised output format: {}".format(file_format))

        if write_mesh_file:
            mesh_data = self.to_dict(include_mesh=True)["mesh"]
            mesh_filename = joinpath(directory,
                                     "{}mesh{}.h5".format(prefix, suffix))
            write_mesh(mesh_data, filename=mesh_filename)
            return filename, mesh_filename
        else:
            return filename