import analysis_utils as a if __name__ == "__main__": path_to_files = '/Volumes/Plata1/Shared/Ariel/fiorentini_data/' file_name = sys.argv[1] p, l, data_rec = a.get_data('%s/%s' % (path_to_files, file_name)) fix_idx = np.where(data_rec['task'] == 'fixation') per_idx = np.where(data_rec['task'] == 'periphery') fix_idx = np.where(data_rec['task'] == 'fixation') c = data_rec['correct'] amp = data_rec['contrast'] th_per = a.analyze(amp[per_idx], c[per_idx]) th_fix = a.analyze(amp[fix_idx], c[fix_idx]) x, y = th_per[4], th_per[5] fig = plt.figure() ax = fig.add_subplot(1, 2, 1) ax.plot(x, y, 'o') x_for_plot = np.linspace(np.min(x), np.max(x), 100) ax.plot(x_for_plot, a.weibull(x_for_plot, th_per[0], th_per[3])) fig.suptitle('Periphery task:thresh=%1.2f, slope=%1.2f' % (th_per[0], th_per[3])) staircase = amp[per_idx]
correct_this_block = correct_this_run[block_type == i] if i == 'A': if p['task'] == ' Annulus ': contrast_this_block = contrast_this_block - p[' annulus_contrast'] for n in range(trials_per_condition): contrast_A[n+(trials_per_condition*file_idx)] *= contrast_this_block[n] correct_A[n+(trials_per_condition*file_idx)] *= correct_this_block[n] #print contrast_this_block, correct_this_block block_file_stem = file_stem + '_' + labelit[idx_block] fig_name_A = 'data/analyzed_data/%s.png'%(block_file_stem) else: contrast_this_block = contrast_this_block[p[' trials_per_dummy']:] correct_this_block = correct_this_block[p[' trials_per_dummy']:] for n in range(trials_per_condition): contrast_B[n+(trials_per_condition*file_idx)] *= contrast_this_block[n] correct_B[n+(trials_per_condition*file_idx)] *= correct_this_block[n] block_file_stem = file_stem + '_' + labelit[idx_block] fig_name_B = 'data/analyzed_data/%s.png'%(block_file_stem) #fig_name = 'data/analyzed_data/%s.png'%(file_stem) th,lower,upper = ana.analyze(contrast_A, correct_A, guess, flake, slope, fig_name_A) print "Threshold estimate: %s, CI: [%s,%s]"%(th, lower, upper) th,lower,upper = ana.analyze(contrast_B, correct_B, guess, flake, slope, fig_name_B) print "Threshold estimate: %s, CI: [%s,%s]"%(th, lower, upper)
correct_this_run = data_rec['correct'] block_type = data_rec['block_type'] print p[' trials_per_dummy'] for n in range(trials_per_condition): if n >= p[' trials_per_dummy']: contrast[n+(trials_per_condition*file_idx)] *= contrast_this_run[n] correct[n+(trials_per_condition*file_idx)] *= correct_this_run[n] if not os.path.exists('data/analyzed_data'): os.mkdir('data/analyzed_data') labelit = ['annulus_on','annulus_off'] for idx_block,i in enumerate(['A','B']): contrast_this_block = contrast_this_run[block_type == i] correct_this_block = correct_this_run[block_type == i] if i == 'A': if p['task'] == ' Annulus ': contrast_this_block = contrast_this_block - p[' annulus_contrast'] else: print i contrast_this_block = contrast_this_block[p[' trials_per_dummy']:] correct_this_block = correct_this_block[p[' trials_per_dummy']:] block_file_stem = file_stem + '_' + labelit[idx_block] fig_name = 'data/analyzed_data/%s.png'%(block_file_stem) th,lower,upper = ana.analyze(contrast_this_block, correct_this_block, guess, flake, slope, fig_name) print "Threshold estimate: %s, CI: [%s,%s]"%(th, lower, upper)
import analysis_utils as a if __name__ == "__main__": path_to_files = "/Volumes/Plata1/Shared/Ariel/fiorentini_data/" file_name = sys.argv[1] p, l, data_rec = a.get_data("%s/%s" % (path_to_files, file_name)) fix_idx = np.where(data_rec["task"] == "fixation") per_idx = np.where(data_rec["task"] == "periphery") fix_idx = np.where(data_rec["task"] == "fixation") c = data_rec["correct"] amp = data_rec["contrast"] th_per = a.analyze(amp[per_idx], c[per_idx]) th_fix = a.analyze(amp[fix_idx], c[fix_idx]) x, y = th_per[4], th_per[5] fig = plt.figure() ax = fig.add_subplot(1, 2, 1) ax.plot(x, y, "o") x_for_plot = np.linspace(np.min(x), np.max(x), 100) ax.plot(x_for_plot, a.weibull(x_for_plot, th_per[0], th_per[3])) fig.suptitle("Periphery task:thresh=%1.2f, slope=%1.2f" % (th_per[0], th_per[3])) staircase = amp[per_idx] ax = fig.add_subplot(1, 2, 2)