async def fetch(): s = smmrpy.SMMRPY('8B1BD1A777') # Instantiate the SMMRPY instance. article = await s.get_smmry( 'https://edition.cnn.com/2018/05/11/middleeast/iran-israel-syria-intl/index.html' ) print(article.title) # Print the title of the found article. a = article.content my_list = a.split(".") for sent in my_list: analyzer.analyze(sent)
def compare(testname, olddir, curdir, config_file='perf.conf', output_dir="./result.txt"): config = ConfigParser.ConfigParser() config.read(config_file) result_file_pattern = config.get(testname, "result_file_pattern") def search_files(dir): cmd = 'find %s|grep "%s.*/%s"' % (dir, testname, result_file_pattern) print cmd return commands.getoutput(cmd) oldlist = search_files(olddir) newlist = search_files(curdir) if oldlist != "" or newlist != "": analyzer.analyze(oldlist, newlist, output_dir)
def make_freq(file): """テキストファイルを読み込んで形態素解析結果を返す 戻り値 : 解析結果を格納した多重リスト """ print('テキストを読み込んでいます...') with open( file, # ファイル名を指定 'r', # 読み取り専用で開く encoding='utf_8' # エンコード方式を指定 ) as f: text = f.read() # 全データをtextに格納 text = re.sub('\n', '', text) # 文末の改行文字を取り除く word_dic = {} # 語を保持するリスト # ①形態素解析の結果をリストとして取得 analyze_list = analyzer.analyze(text) # ②多重リストの要素を2つのパラメーターに取り出す for wd, part in analyze_list: # keyword_check()関数の戻り値がTrueの場合 if (analyzer.keyword_check(part)): if wd in word_dic: # 辞書に語と同じキーがあるか word_dic[wd] += 1 # キーの値に1加算 else: # 該当するキーがなければ word_dic[wd] = 1 # 単語をキーにして値を1にする return (word_dic) # 頻度表としての辞書を返す
def getOutput(): global filename # check if the filename is not empty if filename: # clear the treeview first before putting any data removeAll(lexemeTable) removeAll(symbolTable) # process the file data = analyzer.analyze(filename) # display the data in the treeview (lexeme and symbol table) printLexeme(data[0]) printSymbols(data[1]) # this will print the output of the LOLcode file textOut = "" for text in data[2]: textOut += text outputText.config(state=NORMAL) outputText.delete(1.0, END) outputText.insert(END, textOut) outputText.config(state=DISABLED) else: messagebox.showwarning("Message Box", "No File Selected!")
def SelectClassHeat(self, evt): self.Debug('SelectClassHeat') if evt is None: cls, heat = self.class_heat else: cls, heat = self.recs[evt.GetSelection()] self.class_heat = cls, heat self.Info('Selected class %s heat %s' % (cls, heat)) if self.editwin: self.sizer.Remove(self.editwin) self.editwin.Destroy() #reload(analyzer) res = analyzer.analyze(heat, self.record[cls][heat], self.scoringsystem) self.editwin = EditWin1(self.record[cls][heat][0], self.record[cls][heat][1], res, self.topparent, self, self.debug + (not not self.debug), zoom=self.zoom, seltime=self.seltime) self.sizer.Add(self.editwin, 1, wx.EXPAND) self.sizer.Layout()
def test(): logging.info("test: begin ...") # test flow order flow = [ 'T', 'A', 'T', 'G', 'T', 'C', 'B', 'A', 'G', 'T', 'G', 'C', 'A', 'T', 'G', 'T', 'C', 'A', 'T', 'G', 'T', 'C', 'A' ] # test sequence sequence = [ 'T', 'C', 'A', 'G', 'G', 'G', 'C', 'A', 'G', 'C', 'G', 'C', 'A', 'A', 'A', 'A', 'G', 'G', 'G', 'A', 'A', 'G', 'A', 'T', 'A', 'C', 'C', 'A', 'A', 'G', 'G', 'A', 'G', 'G', 'C', 'A', 'T', 'G', 'G', 'C', 'C', 'T', 'T', 'T', 'G', 'T', 'C', 'A', 'A', 'G', 'G', 'G', 'C', 'C', 'C', 'C', 'C', 'C', 'T', 'C', 'T', 'C', 'T', 'G', 'A', 'G', 'C', 'T', 'C', 'T', 'C', 'A', 'T', 'C', 'A', 'C', 'T', 'T', 'T', 'C', 'C', 'T', 'C', 'C', 'C', 'C', 'C' ] # test analysis number_of_incorporation = analyzer.analyze(flow, sequence) # test incorporation output logging.info(number_of_incorporation) # test output plotting plotter.plot(flow, number_of_incorporation, "Test") logging.info("test: complete ...")
def intraday_working_hour_only(stock_symbols, crypto_symbols, date): start_time = "{} 09:30:00".format(date) end_time = "{} 16:00:00".format(date) df = load_data(start_time, end_time, crypto_symbols, stock_symbols, True) analysis = analyze(df, start_time, end_time, stock_symbols + crypto_symbols) print(analysis)
def find_route(source, dest): """ Find path from source to dest via Wikipedia links """ curr = "https://en.wikipedia.org/wiki/" + source order = [source] # links traversed print(curr) while True: unseen_links = [] # Grab all links in page page_links = link_grab.get_links(curr) for link in page_links: # Ensures no cycles if link not in SEEN: # only store links that have not been visited unseen_links.append(link) # Ensures the program does not get stuck if not unseen_links: # all links on page have been visited if curr.lower() == source.lower(): # have tracked back to source print("Impossible to get there") # no source to dest path sys.exit() if curr in order: order.remove(curr) curr = order[-1] # this link was a bad choice, move back continue best_links = analyzer.analyze(list(unseen_links), dest) step = best_links[0] SEEN.append(step) order.append(step) curr = "https://en.wikipedia.org/wiki/" + step print(curr) if step.lower() == dest.lower(): # destination reached print(order) break
def run_analyzer(self, timeout=TIMEOUT_DEFAULT): import analyzer analysis_results = to_unicode(analyzer.analyze(self.testee)) try: self.result.update(json.loads(analysis_results)) except ValueError: self.result["status"] = analysis_results
def analyze(request): pwd = settings.BASE_DIR JSON_FILE = pwd + '/don/don.json' params = { 'error_file': pwd + '/don/static/don.error.txt', 'test:all': True, 'test:ping': False, 'test:ping_count': 1, 'test:ovs': True, 'test:report_file': pwd + '/don/static/don.report.html', } analyzer.analyze(JSON_FILE, params) #output = analyzer.analyze(JSON_FILE, params) #html = '<html><body>Output: %s</body></html>' % output #return HttpResponse(html) return HttpResponseRedirect('/static/don.report.html')
def analyze(request): pwd = settings.BASE_DIR JSON_FILE = pwd + "/don/don.json" params = { "error_file": pwd + "/don/static/don.error.txt", "test:all": True, "test:ping": False, "test:ping_count": 1, "test:ovs": True, "test:report_file": pwd + "/don/static/don.report.html", } analyzer.analyze(JSON_FILE, params) # output = analyzer.analyze(JSON_FILE, params) # html = '<html><body>Output: %s</body></html>' % output # return HttpResponse(html) return HttpResponseRedirect("/static/don.report.html")
def run_bot(r): for mention in r.inbox.unread(limit=10): if (mention.was_comment): target = mention.parent().author if (target.name != config.username): countP = 0 countN = 0 ratio = 0 #summarize target comment history sentiment for comment in r.redditor( target.name).comments.new(limit=None): sentiment = analyze(comment.body) if (sentiment == 1): countP += 1 elif (sentiment == -1): countN += 1 if (countN + countP != 0): ratio = countP / (countN + countP) print('countP: ' + str(countP)) print('countN: ' + str(countN)) print('ratio: ' + str(ratio)) #Build comment reply graph = "##👿 <" for i in range(10): if (ratio <= (i + 1) / 10 and ratio >= (i) / 10): graph += " x " else: graph += " - " graph += "> 😇 " reply = "You have summoned the **Thought-Police-Bot** to investigate /u/" + target.name + "\n\n" reply += graph + "\n\n" if (ratio > 0.80): reply += "/u/" + target.name + " passes the investigation with an impressively wholesome rating." elif (ratio > 0.6): reply += "/u/" + target.name + " passes the investigation respectably." elif (ratio > 0.45): reply += "/u/" + target.name + " passes the investigation... but just barely." elif (ratio > 0.2): reply += "/u/" + target.name + " has failed the investigation!" else: reply += "/u/" + target.name + " has failed the investigation with a highly toxic rating!" try: mention.reply(reply) except Exception: print("Error replying - PRAWException") else: print("Skipped") mention.mark_read() time.sleep(5)
def analyze(request): # pwd = settings.BASE_DIR pwd = settings.ROOT_PATH JSON_FILE = pwd + '/don/ovs/don.json' params = { 'error_file': pwd + '/don/templates/don/don.error.txt', 'test:all': True, 'test:ping': False, 'test:ping_count': 1, 'test:ovs': True, 'test:report_file': pwd + '/don/templates/don/don.report.html', } print "params ====> ", params analyzer.analyze(JSON_FILE, params) # output = analyzer.analyze(JSON_FILE, params) # html = '<html><body>Output: %s</body></html>' % output # return HttpResponse(html) # return HttpResponseRedirect('/static/don.report.html') return render(request, "don/ovs/analyze.html")
def runScrapper(source, e, queue): # Button press function if source in source_functions: print("Started ", source, " Extraction") fileToAnalyze = source_functions[source]() print("Finished extraction") e.set() # Done extraction time.sleep(0.4) # To ensure progress bar shows done e.clear() # reset flag print("Calling Analyzer on file ", fileToAnalyze) output_file = analyzer.analyze(fileToAnalyze) time.sleep(0.2) e.set() # Done analysis queue.put(output_file) print("Done Analysis") else: # Custom Headline output_file = analyzer.analyze(source) # Analyze custom headline file e.set() # Done analysis queue.put(output_file)
def classify_tweet(c, tweet): cities, transportations = analyze(tweet['text']) if len(cities) > 0 or len(transportations) > 0: update(c, tweet['id'], { 'cities': cities, 'transportations': map(serialize_transport, transportations), 'confirmedAsOffer': True }) print ('Updated a tweet.') else: print ('Ignored the update')
def post(self): actual_text = request.json['actual_text'] optimal_text = request.json['optimal_text'] sentiment_analysis, targetting_analysis = analyze( actual_text, optimal_text) print(sentiment_analysis) print(targetting_analysis) return { 'sentiment_analysis': str(sentiment_analysis), 'targetting_analysis': str(targetting_analysis), }
def featuresScreenTimerFired(data): # if cannot complete analysis, direct user to load screen if data.analysisInProgress: try: data.results = a.analyze(data.filename, data.features) data.analysisInProgress = False data.mode = "analyzeScreen" except Exception as e: print(e) data.analysisInProgress = False data.mode = "loadDataScreen"
def analyze(request): # pwd = settings.BASE_DIR pwd = settings.ROOT_PATH JSON_FILE = pwd + '/don/ovs/don.json' params = { 'error_file' : pwd + '/don/templates/don/don.error.txt', 'test:all' : True, 'test:ping' : False, 'test:ping_count' : 1, 'test:ovs' : True, 'test:report_file' : pwd + '/don/templates/don/don.report.html', } print "params ====> ",params analyzer.analyze(JSON_FILE, params) #output = analyzer.analyze(JSON_FILE, params) #html = '<html><body>Output: %s</body></html>' % output #return HttpResponse(html) # return HttpResponseRedirect('/static/don.report.html') return render(request,"don/ovs/analyze.html")
def upload_file(): if request.method == 'POST': f = request.files['the_file'] destination = os.path.join(app.config['UPLOAD'], f.filename) f.save(os.path.join(app.config['UPLOAD'], f.filename)) # Add analyze code output = a.analyze(destination) print(output) return output
def schemeLoad(self, cont, env, args): """Special primitive: implements LOAD.""" symbolicFilename = str(args[0]) try: f = open(symbolicFilename) try: text = "(begin \n%s\n 'ok)" % f.read() finally: f.close() expandedExp = self.get_expander().expand(parser.parse(text)) analyzedExp = analyzer.analyze(expandedExp) return analyzer.texec(analyzedExp, env, cont) except IOError, e: raise error.SchemeError, "LOAD error -- %s" % str(e)
def runScrapper(source, e, queue): if source in source_functions: print("Started ", source, " Extraction") fileToAnalyze = source_functions[source]() print("Finished extraction") # Set sync flag to done e.set() # To ensure progress bar shows done time.sleep(0.4) # Reset sync done flag before calling analyzer e.clear() print("Calling Analyzer on file ", fileToAnalyze) output_file = analyzer.analyze(fileToAnalyze) # Done analysis, set flag e.set() # Store the file name where the analyzer stored it's scores queue.put(output_file) print("Done Analysis") else: # Custom Headline output_file = analyzer.analyze(source) e.set() # Done analysis queue.put(output_file)
def analyze_result(self, version, spectra_list, fault_list, formula): # print('spectra len to analyze : %s' % len(spectra_list)) spectra_list.sort(reverse=True) # print_spectra(version.cal_result_dir(formula), spectra_list) # analyzer.count_fault_rank(fault_list, spectra_list) self.ranker(fault_list, spectra_list, version) fault_result_list = [fault_now.to_dict() for fault_now in fault_list] # analyze_judgements = ['EXAM'] result_dict = {'project': version.name(), 'no': int(version.no())} to_exclude = version.return_spectra_exclude() if self.exclude_blank else [] for analyze_judgement in self.analyze_judgements: result_dict[analyze_judgement] = analyzer.analyze( analyze_judgement, spectra_list, fault_list, to_exclude) # print('finish analyze') return fault_result_list, result_dict
def main(): logging.info("main: begin ...") # reading the sequence from the fasta file sequence = fastareader.read_sequence() # reading the flow order flow_order_map = h5reader.read_flow_order() # for each flow order do the following for flow_order in flow_order_map: logging.info("For flow order: " + flow_order) # getting the list against the key flow = flow_order_map.get(flow_order) # passing in the flow and the sequence to get the number on incorporation for the current flow order number_of_incorporation = analyzer.analyze(flow, sequence) # plot the output with the current flow order plotter.plot(flow, number_of_incorporation, flow_order) logging.info("main: complete ...")
def detect(data, channel): try: response = { 'id': data['id'], 'status': 'processing', 'result': {}, 'fullname': data['fullname'], } channel.basic_publish(exchange='', routing_key='detection-response', body=json.dumps(response)) print(data) file_params = analyzer.analyze(data['fullname']) params_array = np.array(file_params, dtype=np.float32).reshape(1, -1) transformed_params = sc.transform(params_array) # prediction = classifier.predict(transformed_params) probs = classifier.predict_proba(transformed_params) best_n = np.argsort(probs, axis=1) print(probs) print(best_n) response = { 'id': data['id'], 'status': 'finished', 'result': { "probs": probs[0].tolist(), }, 'fullname': data['fullname'], } channel.basic_publish(exchange='', routing_key='detection-response', body=json.dumps(response)) except: response = { 'id': data['id'], 'status': 'failed', 'result': {}, 'fullname': data['fullname'], } channel.basic_publish(exchange='', routing_key='detection-response', body=json.dumps(response))
def analyze_code(pythonfile): # transform to cfg cfg, g = transform.transformToCFG('./uploads/' + pythonfile) start_time = time.time() # analyze broken authentication vulnerabilities, count_node = analyzer.analyze(cfg, g, './uploads/' + pythonfile) end_time = time.time() # analyze time in second exec_time = end_time - start_time # visualize output visualize.createImage(g, pythonfile) return vulnerabilities, exec_time * 1000, count_node
def runScrapperDate(source, e, queue, year, month, day): name_functions = { "guardian": guardianScrapperDate, "new-york-times": nyTimesScrapperDate, "times-of-india": toiScrapperDate } if source in name_functions: print("Started ", source, " Extraction") fileToAnalyze = name_functions[source](str(year), str(month), str(day)) print("Calling Analyzer on file ", fileToAnalyze) output_file = analyzer.analyze(fileToAnalyze) e.set() queue.put(output_file) print("Done Analysis") else: e.set() pass
def analyzerhtml(tmpfilename, htmlfilename, execpath, reqspath, aaffiles): if not len(aaffiles) > 0: print "empty AAF file list, no action taken" return (files, removedFiles) = analyzer.analyze(tmpfilename, execpath, aaffiles, reqspath) files = ['File Set'] + files # Run the analyzer to generate a detailed requirement listing reqsDetailCmdArgs = [ execpath, "-report", "-detail", "-type", "all", "-reqs", reqspath ] reqsDetailPipe = subprocess.Popen(reqsDetailCmdArgs, stdout=subprocess.PIPE, stderr=None) # Run the analyzer to generate a list of requirements that are covered # by test implementations. reqsCovCmdArgs = [execpath, "-report", "-testcoverage", "-reqs", reqspath] reqsCovPipe = subprocess.Popen(reqsCovCmdArgs, stdout=subprocess.PIPE, stderr=None) # Parse the detailed requirement listing and the coverage listing. requirements = parse.parse_requirements(reqsDetailPipe.stdout, reqsCovPipe.stdout) parse.parse_file_coverage(tmpfilename, requirements) for i in range(0, len(files)): if sys.platform == 'win32' or sys.platform == 'cygwin': files[i] = files[i].split('\\')[-1] else: files[i] = files[i].split('/')[-1] # Parse the test result data to generate the result table and output # the table in html testResults = parse.get_result_data(files, requirements) parse.write_html(htmlfilename, testResults, requirements, removedFiles) print "succesfully wrote html file:", htmlfilename
def report(repo_url): repo = create_repository(repo_url) if repo is None: flash('Given repository does not exists or could not be accessed') return redirect(url_for('index')) if is_cached(repo): results = mongo.db.repositories.find_one({'url': repo.url}) else: path = clone(repo) results = analyze(path) repo.save_analysis_results(results) cache(repo) clear(path) results = repo.to_document() return render_template('report/results.html', report=results)
def main(): p = argparse.ArgumentParser() p.add_argument('rootdir', metavar='rootdir', nargs='?', default='.', help='the directory to scan (optional: default is the current directory)') args = p.parse_args() root = os.path.abspath(args.rootdir) sanity.ensure(root) files = scanner.scan(root) defs = list(parser.parse(root, files)) fix_methods = False if fix_methods: results = analyzer.analyze(root, files, defs) fixer.fix_method_declarations(root, defs, results) else: a2 = analyzer.analyze2(root, files, defs) fixer.fix2(root, defs, files, a2)
def dialogue(self, input): """ マルコフ連鎖によって生成された文章群から ユーザーの発言に含まれる名詞を含むものを抽出して応答メッセージとして返す。 Parameters: input(str) :ユーザーによって入力された文字列。 Returns: str: 応答メッセージ。 """ # インプット文字列を形態素解析 parts = analyzer.analyze(input) m = [] # # 解析結果の形態素と品詞に対して反復処理 for word, part in parts: # インプット文字列に名詞があればそれを含むマルコフ連鎖文を検索 if analyzer.keyword_check(part): #print('afetr_check_word===',word) # マルコフ連鎖で生成した文章を1つずつ処理 for element in self.sentences: # 形態素の文字列がマルコフ連鎖の文章に含まれているか検索する # 最後を'.*?'にすると「花」のように検索文字列だけにもマッチ # # + '.*'として検索文字列だけにマッチしないようにする # find = '.*?' + word + '.*' # マルコフ連鎖文にマッチさせる tmp = re.findall(find, element) if tmp: # マッチする文章があればリストmに追加 m.append(tmp) # findall()はリストを返してくるので多重リストをフラットにする m = list(chain.from_iterable(m)) if m: # インプット文字列の名詞にマッチしたマルコフ連鎖文からランダムに選択 return random.choice(m) else: # マッチするマルコフ連鎖文がない場合 return random.choice(self.sentences)
def SelectClassHeat(self,evt): self.Debug('SelectClassHeat') if evt is None: cls, heat = self.class_heat else: cls, heat = self.recs[evt.GetSelection()] self.class_heat = cls, heat self.Info('Selected class %s heat %s'%(cls,heat)) if self.editwin: self.sizer.Remove(self.editwin) self.editwin.Destroy() #reload(analyzer) res = analyzer.analyze(heat,self.record[cls][heat],self.scoringsystem) self.editwin = EditWin1(self.record[cls][heat][0],self.record[cls][heat][1], res, self.topparent,self,self.debug+(not not self.debug), zoom = self.zoom, seltime=self.seltime) self.sizer.Add(self.editwin,1,wx.EXPAND) self.sizer.Layout()
def main(self, analyzer): offset = 6 isFinished = False isNewTime = True self.getOptions() tools = ["iperf", "scp"] if not os.path.exists(self.uriTime): print('WARN! Create a timeRead file!') sys.exit(0) timeRead = self.readTimeRead(self.uriTime) timeR = timeRead.split(",") timeRNew = timeRead while (not isFinished): fileLines, isFinished = self.readLog(self.uriLog) for i in range(len(fileLines) - 1, 0, -1): #print(line) result = analyzer.analyze(fileLines[i], tools) if result[0]: if self.check(result, timeR, offset): isFinished = True break if isNewTime: timestampNew = self.splitStr(result[1], ' ', offset) timeRNew = result[2] + "," + timestampNew isNewTime = False print self.combi(result[1], result[2]) self.excuteShell(self.combi(result[1], result[2])) self.closeFile() print(timeRNew) with open(self.uriTime, 'w') as timeReadFile: timeReadFile.write(timeRNew)
def main(self, analyzer): offset = 6 isFinished = False isNewTime = True self.getOptions() tools = ["iperf", "scp"] if not os.path.exists(self.uriTime): print('WARN! Create a timeRead file!') sys.exit(0) timeRead = self.readTimeRead(self.uriTime) timeR = timeRead.split(",") timeRNew = timeRead while(not isFinished): fileLines, isFinished = self.readLog(self.uriLog) for i in range (len(fileLines) - 1, 0, -1): #print(line) result = analyzer.analyze(fileLines[i], tools) if result[0]: if self.check(result, timeR, offset): isFinished = True break if isNewTime: timestampNew = self.splitStr(result[1], ' ', offset) timeRNew = result[2] + "," + timestampNew isNewTime = False print self.combi(result[1], result[2]) self.excuteShell(self.combi(result[1], result[2])) self.closeFile() print(timeRNew) with open(self.uriTime, 'w') as timeReadFile: timeReadFile.write(timeRNew)
def analyzerhtml(tmpfilename, htmlfilename, execpath, reqspath, aaffiles): if not len(aaffiles) > 0: print "empty AAF file list, no action taken" return (files, removedFiles) = analyzer.analyze(tmpfilename, execpath, aaffiles, reqspath) files = ["File Set"] + files # Run the analyzer to generate a detailed requirement listing reqsDetailCmdArgs = [execpath, "-report", "-detail", "-type", "all", "-reqs", reqspath] reqsDetailPipe = subprocess.Popen(reqsDetailCmdArgs, stdout=subprocess.PIPE, stderr=None) # Run the analyzer to generate a list of requirements that are covered # by test implementations. reqsCovCmdArgs = [execpath, "-report", "-testcoverage", "-reqs", reqspath] reqsCovPipe = subprocess.Popen(reqsCovCmdArgs, stdout=subprocess.PIPE, stderr=None) # Parse the detailed requirement listing and the coverage listing. requirements = parse.parse_requirements(reqsDetailPipe.stdout, reqsCovPipe.stdout) parse.parse_file_coverage(tmpfilename, requirements) for i in range(0, len(files)): if sys.platform == "win32" or sys.platform == "cygwin": files[i] = files[i].split("\\")[-1] else: files[i] = files[i].split("/")[-1] # Parse the test result data to generate the result table and output # the table in html testResults = parse.get_result_data(files, requirements) parse.write_html(htmlfilename, testResults, requirements, removedFiles) print "succesfully wrote html file:", htmlfilename
def schemeEval(self, cont, env, args): expandedExp = self.get_expander().expand(args[0]) analyzedExp = analyzer.analyze(expandedExp) return analyzer.texec(analyzedExp, env, cont)
def handle(filename): sdpdata = sdpdatafile.SdpDataFile(filename) log = simplelogger.SimpleLogReader(sdpdata.logfilename) logw = simplelogger.SimpleLogWriter('sub', sdpdata.logfilename) status = log.getstatus() if status == 'concluded': inlineprint('all done.') elif status is None or status == 'tosubmit': inlineprint('submitting...') submit(sdpdata) handle(filename) elif status == 'failed': if args.force: inlineprint('failed; forced resubmission...') submit(sdpdata) handle(filename) else: inlineprint('failed.') elif status == 'submitted' or status == 'running': inlineprint('submitted.') if args.reallyrunning: inlineprint('checking...') submissionid = log.lastbonusexprwith(expr='submissionid') if world.isreallyrunning(submissionid): inlineprint('is really running.') else: inlineprint('is NOT really running:') logw.setstatus('failed') handle(filename) if args.pause: inlineprint('waiting for completion...') submissionid = log.lastbonusexprwith(expr='submissionid') world.waitforcompletion(submissionid) inlineprint('completed.') handle(filename) elif status == 'finished': tr = log.lastbonusexprwith(expr='terminateReason') primopt = log.lastbonusexprwith(expr='primalObjective') if tr == 'maxRuntime exceeded' or \ tr == 'maxIterations exceeded': inlineprint('ran out of time.') if args.maxsubmissions and \ log.numlineswith(expr='status', bonusexpr='submitted') >= \ args.maxsubmissions: inlineprint('too many submissions to resubmit.') logw.write('too many submissions.') logw.setstatus('failed') handle(filename) else: inlineprint('resubmitting... ') submit(sdpdata) handle(filename) else: # i.e. terminateReason is not timed out try: newfilename = analyzer.analyze(sdpdata, tr, primopt) except ValueError: logw.write('analyzer failed with ValueError') logw.setstatus('failed') inlineprint('could not analyze the result.') handle(filename) else: logw.setstatus('concluded') if newfilename is None: inlineprint('done.') elif newfilename == filename: inlineprint('resubmitting according to analyzer...') logw.setstatus('tosubmit') handle(filename) else: print('replaced -->') inlineprint(os.path.basename(newfilename) + ' :') logw.write('replaced with', newfilename) handle(newfilename) else: # How did you get here? print('Unknown status for ' + filename + '!')
import downloader import analyzer import time prefix = r'http://www.lingdiankanshu.com/html/0/175/' url = r'75298.html' n = 1 while True: now = time.time() soup = downloader.download(prefix + url) if soup == None: print('Finished or Error') break url = analyzer.analyze(soup) print('Chapter',n,'finished in',time.time()-now,'seconds') if url == None: print('No found next!') break n = n + 1
#! /usr/bin/python # -*- coding: utf-8 -*- import sys, getopt, analyzer # Usage: # python runanalyzer.py coverage_file_to_create AAFAnalyzer_executable \ # file1.aaf file2.aaf file3.aaf ... AAFRequirements.xml # # where, # coverage_file_to_create is the coverage file to generate # AAFAnalyzer_executable is the location of the AAFAnalyzer executable # AAFRequirements.xml is the location of the AAFRequirements.xml document # file{1,2,3,...}.aaf are the .aaf files to be processed analyzer.analyze( sys.argv[1], sys.argv[2], sys.argv[4:-1], sys.argv[3] )
def get_pretty_path_list(self): return analyzer.analyze(self).get_pretty_path_list()
def get_pretty_path(self): if settings.VERBOSE > 2: print 'File.get_pretty_path()' print 'Path from analyzer: %s' % analyzer.analyze(self).get_pretty_path() return analyzer.analyze(self).get_pretty_path()
doObject = True if len(args) != 2: usage(stream=stderr) return 1 name, filename, = args import parser import analyzer import log import codegen log.setStreams(stdout=stdout, stderr=stderr) parseTree = parser.parse(filename, debug=doDebug) parseTree.name = name analyzer.analyze(parseTree) if doClient: print >> stderr, 'Generating client ...' codegen.genClient(parseTree, outdir=dirClient) if doDBus: codegen.genClientDBus(parseTree, outdir=dirClient) if doTests: codegen.genTests(parseTree, outdir=dirClient) if doShell: codegen.genShell(parseTree, outdir=dirClient) if doObject: codegen.genObject(parseTree, outdir=dirClient) if doServer: print >> stderr, 'Generating server ...' codegen.genServer(parseTree, outdir=dirServer) if doDBus:
def do_task_fetch_material(username, force_top): user = CurryUser.get_by_key_name(username) force_top = bool(int(force_top)) if not user: logging.error("no such user '%s'" % username) return 'bad' tweet_list = api.GetUserTimeline(screen_name=username, count=config.FETCH_COUNT) tweet = None material_list = None success = False if force_top: tweet_list = tweet_list[0:1] else: shuffle(tweet_list) # # select material # for tweet in tweet_list: # check history if not force_top and is_duplicated(tweet): continue text = tweet.GetText().encode('utf-8') material_list = analyze( text, count=config.TWEET_MATERIAL_MAX ) if len(material_list) > 0: # found material success = True break if success: # record to history # TODO: trim history chronically History( key_name=str(tweet.id), timestamp=datetime.now() ).put() else: logging.info("material not found for user '%s'" % username) return 'bad' # # select receivers # link_list = (UserLink .all() .filter('sender = ', user) .order('timestamp') .fetch(limit=config.RECEIVER_MAX) ) for link in link_list: # randomize material per receiver shuffle(material_list) count = 1 + int(random() * len(material_list)) receive_material = material_list[:count] taskqueue.add( queue_name='post-queue', url='/task/post_material/%s/%s' % (username, link.receiver.key().name()), params={'material': receive_material} ) link.timestamp=datetime.now() logging.debug("sending from user '%s' to '%s' with material '%s'" % (username, link.receiver.key().name(), repr(receive_material))) # update timestamp db.put(link_list) # send to karei_bot if no receivers if len(link_list) == 0: shuffle(material_list) count = 1 + int(random() * len(material_list)) receive_material = material_list[:count] taskqueue.add( queue_name='post-queue', url='/task/post_material/%s/%s' % (username, config.MY_NAME), params={'material': receive_material} ) logging.debug("sending from user '%s' to '%s' with material '%s'" % (username, config.MY_NAME, repr(receive_material))) return 'ok'
url = "https://www.nytimes.com/2017/09/29/us/politics/tom-price-trump-hhs.html" outputFile = "summarized.txt" freqFile = "wordFreq.txt" #settings PERCENT_SUMMARIZED = 15 LENGTH_ADJUSTMENT_FACTOR = 10 OPTIMAL_SENTENCE_LENGTH = 20 SENTENCE_LOCATION_FACTOR = 2 WORD_IN_TITLE_FACTOR = 20 #run extract = client.Extract({"url": url}) parse(extract.get('article').encode('ascii', 'xmlcharrefreplace'), "temp.txt") parse( extract.get('title').encode('ascii', 'xmlcharrefreplace'), "titleTemp.txt") analyze(url, "temp.txt", "titleTemp.txt", outputFile, freqFile, PERCENT_SUMMARIZED, LENGTH_ADJUSTMENT_FACTOR, OPTIMAL_SENTENCE_LENGTH, SENTENCE_LOCATION_FACTOR, WORD_IN_TITLE_FACTOR)
def get_analyzer(self): return analyzer.analyze(self)