+ "_E" + str(epochs) + "_10fold" + str(each_fold) ) file_prefix += "_L" + str(1) + "_H" + str(hidden_size) print "--------------" print "Prefijo de experimento:", file_prefix test_set = appraisals_random_sorted[each_fold * data_slice : (each_fold + 1) * data_slice] training_set = ( appraisals_random_sorted[: each_fold * data_slice] + appraisals_random_sorted[(each_fold + 1) * data_slice :] ) # entrenamiento de una red neuronal de una capa training_stats, trained_network = ann_engine.train_ann( training_set, data_manager.input_fields, hidden_size, epochs ) pickle.dump(trained_network, open(file_prefix + "ANN_pybrain", "wb")) exp_stats = { "Clave_experimento": file_prefix, "Archivo_CSV_ejemplos": file_name_examples, "CP": filter_string_msg, } print "EXPERIMENT STATS:", exp_stats print "TRAINING STATS:", training_stats # activacion de la red con los avaluos de prueba activations_stats = ann_engine.activate_network(trained_network, training_set, data_manager.input_fields)
print "----------------------" # selecciona el 80-20 para entrenamiento y pruebas percent_80 = int(len(appraisals)*0.8) training_app = appraisals[:percent_80] test_app = appraisals[percent_80:] # entrenamiento de una red neuronal de una capa trained_network = ann_engine.train_ann(training_app, None, hidden_size = 50, epochs = 1000) #trained_network = ann_engine.train_ann_multihidden(training_app, None, hidden_size = 50, epochs = 1500) # activacion de la red con los avaluos de prueba ann_engine.activate_network(trained_network, test_app)