+ "_E"
            + str(epochs)
            + "_10fold"
            + str(each_fold)
        )
        file_prefix += "_L" + str(1) + "_H" + str(hidden_size)
        print "--------------"
        print "Prefijo de experimento:", file_prefix
        test_set = appraisals_random_sorted[each_fold * data_slice : (each_fold + 1) * data_slice]
        training_set = (
            appraisals_random_sorted[: each_fold * data_slice]
            + appraisals_random_sorted[(each_fold + 1) * data_slice :]
        )
        # entrenamiento de una red neuronal de una capa
        training_stats, trained_network = ann_engine.train_ann(
            training_set, data_manager.input_fields, hidden_size, epochs
        )

        pickle.dump(trained_network, open(file_prefix + "ANN_pybrain", "wb"))

        exp_stats = {
            "Clave_experimento": file_prefix,
            "Archivo_CSV_ejemplos": file_name_examples,
            "CP": filter_string_msg,
        }

        print "EXPERIMENT STATS:", exp_stats

        print "TRAINING STATS:", training_stats
        # activacion de la red con los avaluos de prueba
        activations_stats = ann_engine.activate_network(trained_network, training_set, data_manager.input_fields)
print "----------------------"

# selecciona el 80-20 para entrenamiento y pruebas






percent_80 = int(len(appraisals)*0.8)
training_app = appraisals[:percent_80]
test_app = appraisals[percent_80:]

# entrenamiento de una red neuronal de una capa 

trained_network = ann_engine.train_ann(training_app, None, hidden_size = 50, epochs = 1000)
#trained_network = ann_engine.train_ann_multihidden(training_app, None, hidden_size = 50, epochs = 1500)


# activacion de la red con los avaluos de prueba

ann_engine.activate_network(trained_network, test_app)