Beispiel #1
0
 def label_nearest_point(self):
     ann = AnnAdaptorSelfInclude(self.points.as_double(), 3)
     ann.query(self.rotation_center)
     i = ann.nn[0]
     gltbx.fonts.ucs_bitmap_8x13.setup_call_lists()
     gl.glDisable(gl.GL_LIGHTING)
     gl.glColor3f(1.0, 1.0, 1.0)
     gl.glLineWidth(1.0)
     xyz = self.points_data["xyz"][i]
     exp_id = self.points_data["id"][i]
     panel = self.points_data["panel"][i]
     d_spacing = self.points_data["d_spacing"][i]
     label = (f"id: {exp_id}; panel: {panel}\n"
              f"xyz: {xyz[0]:.1f} {xyz[1]:.1f} {xyz[2]:.1f}\n"
              f"res: {d_spacing:.2f} Angstrom")
     if "miller_index" in self.points_data and exp_id != -1:
         hkl = self.points_data["miller_index"][i]
         label += f"\nhkl: {hkl}"
     line_spacing = round(gltbx.fonts.ucs_bitmap_8x13.height())
     for j, string in enumerate(label.splitlines()):
         gl.glRasterPos3f(*self.points[i])
         gl.glBitmap(0, 0, 0.0, 0.0, line_spacing, -j * line_spacing, b" ")
         gltbx.fonts.ucs_bitmap_8x13.render_string(string)
def match(a, b, max_separation=2, key="xyzobs.px.value", scale=(1, 1, 1)):
    """Match reflections from list a and list b, returning tuple of
    flex.size_t indices, optionally specifying the maximum distance and
    key to search on (which is assumed to be a 3-vector column). Can also
    apply relative scales to the vectors before matching in case e.g. very
    wide or very fine slicing."""

    xyz_a = a[key]
    xyz_b = b[key]

    if scale != (1, 1, 1):
        x, y, z = xyz_a.parts()
        x *= scale[0]
        y *= scale[1]
        z *= scale[2]
        xyz_a = flex.vec3_double(x, y, z)

        x, y, z = xyz_b.parts()
        x *= scale[0]
        y *= scale[1]
        z *= scale[2]
        xyz_b = flex.vec3_double(x, y, z)

    a = xyz_a.as_double().as_1d()
    b = xyz_b.as_double().as_1d()
    ann = AnnAdaptorSelfInclude(a, 3)
    ann.query(b)

    mm = flex.size_t(range(xyz_b.size()))
    nn, distance = ann.nn, flex.sqrt(ann.distances)

    sel = distance <= max_separation

    mm = mm.select(sel)
    nn = nn.select(sel)
    distance = distance.select(sel)
    return nn, mm, distance
def excercise_nearest_neighbor():

    data = data_from_files()

    A = AnnAdaptor(data, 2)  # construct k-d tree for reference set
    A.query(data)  # find nearest neighbors of query points

    for i in range(len(A.nn)):
        #print "Neighbor of (%7.1f,%7.1f), index %6d distance %4.1f"%(
        #data[2*i],data[2*i+1],A.nn[i],math.sqrt(A.distances[i]))
        assert A.nn[i] != i

    A = AnnAdaptorSelfInclude(data, 2)  # construct k-d tree for reference set
    A.query(data)  # find nearest neighbors of query points

    for i in range(len(A.nn)):
        #print "Neighbor of (%7.1f,%7.1f), index %6d distance %4.1f"%(
        #data[2*i],data[2*i+1],A.nn[i],math.sqrt(A.distances[i]))
        assert A.nn[i] == i
def check_memory():
    data = data_from_files()
    for x in range(1000):
        AnnAdaptorSelfInclude(data, 2).query(data)