Beispiel #1
0
    def test_transform_ids(self):
        annotators = MultiAnnotTypes(annotator_types=self.annotator_types)

        transformed_ids = annotators._transform_ids(annotator_ids=[0, 1, 2, 3, 4])
        true_transformed_ids = [[0, 1, 2], [0, 1]]
        np.testing.assert_array_equal(true_transformed_ids, transformed_ids)

        transformed_ids = annotators._transform_ids(annotator_ids=[1, 4])
        true_transformed_ids = [[1], [1]]
        np.testing.assert_array_equal(true_transformed_ids, transformed_ids)
Beispiel #2
0
    def test_add_annotators(self):
        annotators = MultiAnnotTypes(annotator_types=self.annotator_types)

        # false parameters
        self.assertRaises(TypeError, annotators.add_annotators, annotator_types=None)
        self.assertRaises(TypeError, annotators.add_annotators, annotator_types=[None])

        # correct annotator types
        annotators.add_annotators(annotator_types=ClusterBasedAnnot(X=self.X, y_true=self.y))
        self.assertEqual(self.annotator_types, annotators.annotator_types_)
Beispiel #3
0
 def setUp(self):
     self.X, self.y = load_iris(return_X_y=True)
     self.annotator = ClusterBasedAnnot(X=self.X,
                                        y_true=self.y,
                                        random_state=42)
     annotator_types = [
         ClusterBasedAnnot(X=self.X, y_true=self.y, random_state=42),
         ClusterBasedAnnot(X=self.X, y_true=self.y, random_state=42)
     ]
     self.annotator_types = MultiAnnotTypes(annotator_types=annotator_types)
     self.y_unique = np.unique(self.y)
Beispiel #4
0
    def test_init(self):
        # false parameters
        self.assertRaises(TypeError, MultiAnnotTypes, annotator_types=None)
        self.assertRaises(TypeError, MultiAnnotTypes, annotator_types=[None])

        # correct annotator types
        annotators = MultiAnnotTypes(annotator_types=self.annotator_types)
        self.assertEqual(self.annotator_types, annotators.annotator_types_)
Beispiel #5
0
    def test_confidence_scores(self):
        annotators = MultiAnnotTypes(annotator_types=self.annotator_types)
        C = annotators.confidence_scores(self.X[0:2], annotator_ids=[0])
        C_true = np.full((annotators.n_annotators(), 2), np.nan)
        C_true[0, :] = self.annotator_types[0].confidence_scores(self.X[0:2])[:, 0]
        np.testing.assert_array_equal(C_true.T, C)

        C = annotators.confidence_scores(self.X[0:2])
        C_true = np.full((annotators.n_annotators(), 2), np.nan)
        C_true[0:3, :] = self.annotator_types[0].confidence_scores(self.X[0:2]).T
        C_true[3:5, :] = self.annotator_types[1].confidence_scores(self.X[0:2]).T
        np.testing.assert_array_equal(C_true.T, C)
Beispiel #6
0
    def test_class_labels(self):
        annotators = MultiAnnotTypes(annotator_types=self.annotator_types)
        Y = annotators.class_labels(self.X[0:2], annotator_ids=[0])
        Y_true = np.full((annotators.n_annotators(), 2), np.nan)
        Y_true[0, :] = self.annotator_types[0].class_labels(self.X[0:2])[:, 0]
        np.testing.assert_array_equal(Y_true.T, Y)

        Y = annotators.class_labels(self.X[0:2])
        Y_true = np.full((annotators.n_annotators(), 2), np.nan)
        Y_true[0:3, :] = self.annotator_types[0].class_labels(self.X[0:2]).T
        Y_true[3:5, :] = self.annotator_types[1].class_labels(self.X[0:2]).T
        np.testing.assert_array_equal(Y_true.T, Y)
Beispiel #7
0
class TestDynamicAnnot(unittest.TestCase):
    def setUp(self):
        self.X, self.y = load_iris(return_X_y=True)
        self.annotator = ClusterBasedAnnot(X=self.X,
                                           y_true=self.y,
                                           random_state=42)
        annotator_types = [
            ClusterBasedAnnot(X=self.X, y_true=self.y, random_state=42),
            ClusterBasedAnnot(X=self.X, y_true=self.y, random_state=42)
        ]
        self.annotator_types = MultiAnnotTypes(annotator_types=annotator_types)
        self.y_unique = np.unique(self.y)

    def test_init(self):
        # false parameters
        self.assertRaises(TypeError,
                          DynamicAnnot,
                          annotator_model=None,
                          y_unique=self.y_unique)
        self.assertRaises(TypeError,
                          DynamicAnnot,
                          annotator_model=self.annotator,
                          y_unique=self.y_unique,
                          adversarial=None)
        self.assertRaises(ValueError,
                          DynamicAnnot,
                          annotator_model=self.annotator,
                          y_unique=self.y_unique,
                          adversarial=[False, True])
        self.assertRaises(ValueError,
                          DynamicAnnot,
                          annotator_model=self.annotator,
                          y_unique=self.y_unique,
                          learning_rates=[-2])

        # default learning rates
        learning_rates_1 = DynamicAnnot(annotator_model=self.annotator,
                                        y_unique=self.y_unique,
                                        random_state=42).learning_rates_
        learning_rates_2 = DynamicAnnot(annotator_model=self.annotator,
                                        y_unique=self.y_unique,
                                        random_state=42).learning_rates_
        np.testing.assert_array_equal(learning_rates_1, learning_rates_2)
        self.assertTrue(self.annotator.n_annotators(), len(learning_rates_1))

        # test manual learning rates
        learning_rates = [.2, -.1, .3]
        dynamic_annotator = DynamicAnnot(annotator_model=self.annotator,
                                         y_unique=self.y_unique,
                                         learning_rates=learning_rates)
        np.testing.assert_array_equal(learning_rates,
                                      dynamic_annotator.learning_rates_)
        learning_rates = [.2, -.1, .3, .5, .3, .0]
        dynamic_annotator = DynamicAnnot(annotator_model=self.annotator_types,
                                         y_unique=self.y_unique,
                                         learning_rates=learning_rates)
        np.testing.assert_array_equal(learning_rates,
                                      dynamic_annotator.learning_rates_)

    def test_n_annotators(self):
        dynamic_annotator = DynamicAnnot(annotator_model=self.annotator,
                                         y_unique=self.y_unique)
        self.assertEqual(self.annotator.n_annotators(),
                         dynamic_annotator.n_annotators())
        dynamic_annotator = DynamicAnnot(annotator_model=self.annotator_types,
                                         y_unique=self.y_unique)
        self.assertEqual(self.annotator_types.n_annotators(),
                         dynamic_annotator.n_annotators())

    def test_n_queries(self):
        dynamic_annotator = DynamicAnnot(annotator_model=self.annotator,
                                         y_unique=self.y_unique)
        dynamic_annotator.class_labels(self.X[0:2],
                                       y_true=self.y[0:2],
                                       query_value=2)
        np.testing.assert_array_equal(self.annotator.n_queries(),
                                      dynamic_annotator.n_queries())
        dynamic_annotator = DynamicAnnot(annotator_model=self.annotator_types,
                                         y_unique=self.y_unique)
        dynamic_annotator.class_labels(self.X[0:2],
                                       y_true=self.y[0:2],
                                       query_value=2)
        np.testing.assert_array_equal(self.annotator_types.n_queries(),
                                      dynamic_annotator.n_queries())

    def test_queried_samples(self):
        dynamic_annotator = DynamicAnnot(annotator_model=self.annotator_types,
                                         y_unique=self.y_unique)
        dynamic_annotator.class_labels(self.X[0:2],
                                       y_true=self.y[0:2],
                                       query_value=2,
                                       annotator_ids=[0])
        np.testing.assert_array_equal(self.X[0:2],
                                      dynamic_annotator.queried_samples()[0])

    def test_class_labels(self):
        dynamic_annotator = DynamicAnnot(
            annotator_model=copy.deepcopy(self.annotator_types),
            y_unique=self.y_unique,
            learning_rates=[0., 0., -1., -1., 1., 1.],
            adversarial=[False, False, True, False, True, False])
        dynamic_annotator.class_labels(self.X,
                                       y_true=self.y,
                                       query_value=len(self.X),
                                       annotator_ids=[0, 2, 3, 4])
        labelling_accuracies = np.array(
            dynamic_annotator.labelling_performance(X=self.X, y_true=self.y))
        np.testing.assert_array_equal([0., 1.], labelling_accuracies[[2, 4]])
        self.assertGreater(labelling_accuracies[3], 0)

    def test_confidence_scores(self):
        dynamic_annotator = DynamicAnnot(annotator_model=self.annotator_types,
                                         y_unique=self.y_unique)
        np.testing.assert_array_equal(
            self.annotator_types.confidence_scores(self.X),
            dynamic_annotator.confidence_scores(self.X))
Beispiel #8
0
 def test_queried_samples(self):
     annotators = MultiAnnotTypes(annotator_types=self.annotator_types)
     annotators.class_labels(self.X[0:2], annotator_ids=[0])
     np.testing.assert_array_equal(self.X[0:2], annotators.queried_samples()[0])
Beispiel #9
0
 def test_n_queries(self):
     annotators = MultiAnnotTypes(annotator_types=self.annotator_types)
     annotators.class_labels(self.X, annotator_ids=[0, 3], query_value=len(self.X))
     np.testing.assert_array_equal([len(self.X), 0, 0, len(self.X), 0], annotators.n_queries())
Beispiel #10
0
 def test_n_annotators(self):
     annotators = MultiAnnotTypes(annotator_types=self.annotator_types)
     self.assertEqual(self.annotator_types[0].n_annotators() + self.annotator_types[1].n_annotators(),
                      annotators.n_annotators())